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Abstract

Force plates are widely considered the gold standard in measurement of ground reaction forces

(GRFs) in the study of both humans and legged animals. Intricate GRF profiles of human

gait measured by force plates are used extensively in the study of human biomechanics. Such

information has shed light on some of the most elusive yet prevalent sports injuries such as

those of the anterior cruciate ligament (ACL). In addition, it has led to extraordinary results

in the clinical diagnosis of diseases of the human central nervous system such as Parkinsons

Disease and Multiple Sclerosis. Furthermore, force plates have enabled the non-invasive study

of animal GRF patterns during rapid and complex manoeuvres which has provided indispensable

knowledge towards the design of bio-inspired robots.

Motivated by the extensive utility of force plate technology, the central research challenge

addressed by this project is to determine whether a force plate system capable of reliably

estimating three axis GRFs can be developed for a few thousand rands. If successful, this

system would be the first of its kind to overcome the most significant limitation of existing

force plate technology; cost. Existing force plates used in commercial and academic settings are

typically priced in excess of $30 000 (USD).

The approach adopted in this project exploits a novel mechanical design that allows three axis

GRF data to be captured by only four inexpensive, single-axis load cells arranged in a unique

configuration. However, this particular design yields a highly non-linear relationship between

sensing elements. Machine learning techniques were employed to circumvent the significant

challenge posed by attempting to solve the system analytically.

This project entailed the design and implementation of a complete mechatronic system which

comprised of mechanical, electronic hardware and software subsystems (both at an embedded

and a high level for data processing and the implementation of machine learning algorithms).

A comprehensive and systematic set of experiments was devised to gather training data for

the machine learning models, which were consequently tested and analysed in MATLAB. Even

when subjected to highly impulsive three axis forces induced by natural human gait, the system

was able to estimate exceptionally well with RMS errors (as % of the full scale force) of 1.71%,

1.54% and 0.57% for the x-, y- and z-axis GRF components respectively. Remarkably, three axis

GRF profiles recorded by the system correlated extremely closely to those recorded in published

studies of human gait presented in [9] and [11].

A central conclusion of this study was that, with improved training techniques and refinement to

its design, the force plate system developed could forseeably pose a viable alternative to existing

force plate technologies in applications previously mentioned. Excitingly, this entire system

prototype was produced at a cost of approximately 50 times less than a typical commercial

model and suggestions are made to reduce this cost in future work.
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Chapter 1

Introduction

1.1 Motivation and Background to the Study

The use of force plates in industry and academia is extensive. In studies of human biomechanics,

force plates have proved invaluable in understanding the mechanics of sports injuries as well

as the kinematics of exercise [1]. Many clinical studies [9, 10, 8] have used force plates and

machine learning methods to analyse kinetic features of human gait. This has been instrumental

in the diagnosis of motor-related diseases of the human central nervous system (CNS) such as

Parkinsons Disease and Multiple Sclerosis with up to 98.2% accuracy [9].

Another exciting field of study is that of Biomimicry and bio-inspired robotics. For some

time, human technology was seen to be in stark contrast to nature - almost two mutually

exclusive fields; us, the humans, and everything else. However, humans have become increasingly

intrigued in how animals exploit some of the most incredible mechanisms to perform complex

manoeuvres and achieve superhuman dexterity and agility. The cheetah (Acinonyx jubatus) has

attracted much interest in academia owing to its phenomenal agility and speed. Testament to

this are MIT’s Cheetah quadruped robots [13] and Boston Dynamics’ WildCat quadruped robot,

as well as the extensive studies on the cheetah by UCT’s very own Mechatronics Laboratory

[17, 18, 19, 20]. However, measuring GRFs produced by a cheetah rapid dynamic manoeuvres

has hardly been studied due to the extreme difficulty in doing so. Although several types of

three-axis force sensors exist, they are typically extremely expensive and cannot be physically

attached to the animal without interfering with its capacity for uninhibited motion.

Force plates offer a non-invasive method for achieving this. However, multiple stationary force

plates would be required to gather sufficient data during the cheetah’s motion. This leads to

the most significant limitation of existing commercial force plates; cost.

Development of a low-cost three axis force plate that can accurately estimate GRFs at high

speed will allow several force plates to be deployed in the study of the cheetah - potentially

even for the fraction of the price of a single commercially available version. Such a platform
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1.2. AIM OF THE STUDY

could also be of great use to the Sport Science Institute at UCT and beyond in applications

mentioned above.

1.2 Aim of the Study

The aim of this study was to test a robust and low-cost1 force plate capable of estimating three

axis GRFs.

1.2.1 Objectives of the Study

The fundamental goal of this project was to create a fully-fledged mechatronic system developed

from scratch and in doing so, gain knowledge and exposure to a wide range of skills. The project

objectives are outlined below:

1. Review literature pertaining to the applications and technology behind force plates. Perform

a brief review of other mechanisms for GRF estimation and comment on their effectiveness

compared to force plates.

2. Review the mechanical design of the plate proposed by the project supervisors and perform

simulations to verify the mechanical integrity of the design

3. Design and implement the electronic hardware and embedded software required to sample

data from all relevant sensors with high fidelity and speed

4. Design and implement a sensing mechanism for determining the position of the applied

force on the plate

5. Design a data packetisation and integrity-checking scheme to log sampled data to a

permanent storage medium

6. Implement software for extraction of logged data and processing thereof

7. Devise and conduct a series of rigorous loading tests on the plate to gather extensive

training data with which to train machine learning models

8. Critically evaluate and analyse the performance of machine learning models in estimating

GRFs

1.2.2 Significance of the Study

The prospect of a three axis force plate produced at a significantly lower cost than commercially

available versions is extremely relevant to both commercial and academic applications.

1In the region of a few thousand rands.
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1.3. SCOPE AND LIMITATIONS

According to [1], while highly desirable in sports science applications for providing insight on

human gait patterns and force characteristics during various manoeuvres s mentioned above,

high-end force plates are rarely available in private practices due to their exorbitant cost. A low-

cost platform would be indispensable to private practices, smaller businesses and educational

institutions (such as schools and universities) where the cost is a significant constraint.

Studies such as [8, 9, 10] and several others have shown how force plates can be used in clinical

diagnosis of motor-related CNS disorders. A low-cost force plate would allow many other similar

studies to performed and would potentially advance the understanding of these diseases at a

more rapid rate as a result.

A low-cost force plate array would be invaluable in studies of the cheetah and other quadruped

animals and would provide insightful information to researchers in the development of bio-

inspired robots. In particular, this data would be of great use in the study of the cheetah being

conducted by the UCT Mechatronics Laboratory.

1.3 Scope and Limitations

Although the intention of this project was to develop a fully-fledged system with all the hardware

and software required for an operational force plate, the project forms more of a proof-of-concept

than a fully tested and finished product. It is intended to demonstrate whether or not the novel

mechanical design proposed by the project supervisors can indeed be used to create a low-cost

force plate, and if so, the extent to which GRFs can be accurately estimated using machine

learning methods.

Unfortunately, this platform could not be tested on wild animals as the ethics clearance required

to do so was not acquired. Furthermore, practical considerations pertaining to experiments

performed on cheetahs or other animals - such as the method used to ensure that the cheetah

will actually step on the force plate - are not included in the scope of this project.

A detailed static and dynamic mechanical analysis of this system was deliberately excluded

from the scope of this project as a core objective of this project was to investigate leveraging

machine learning techniques as an alternative to solving mechanics of the system analytically.

1.4 Research Questions to be Investigated

The following research questions were posed and answered during this study:

1. Can a low noise, high fidelity data acquisition system capable of sampling at 1kHz be

developed and used reliably?
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2. Is it possible to use four single-axis load cells mounted in the particular configuration

outlined in Section 5.1 together with machine learning techniques to accurately estimate

three axis force sensors for under R2000?

3. Is it foreseeable that the low-cost force plate system developed in this project could serve

as a viable alternative to high end industrial versions used in the study of humans and

animals?

1.5 Plan of development

This report begins with a thorough review of literature pertaining to the technology and

applications of force plates in Chapter 2. A review on bio-inspired robots and an investigation

into other technologies used to estimate GRFs is included in this chapter. As these concepts

were not covered in university course work and presented the greatest theoretical challenge,

important theory pertaining to the machine learning models utilised in this project is explored

in the Theory Development in Chapter 3.

Chapter 4 details the methodology and experimental procedure followed throughout the various

stages of this project. This chapter details the procedures used to generate training and testing

data for experiments used to test performance of machine learning models.

The design of electronic hardware and embedded software comprising the data acquisition

system is expounded in Chapter 6 and Chapter 7 respectively. The practical implementation

of machine learning models in MATLAB is documented in Chapter 8. Post-processing software

used for extracting and decoding log data is also documented in this chapter.

The performance of the designed system is quantified in Chapter 9 and thereafter, a discussion

of the results obtained is presented in Chapter 10. Finally, conclusions are drawn based on the

results and subsequent discussion and recommendations for future work are provided in Chapter

11. The layout of this report is summarised in Figure 1.1.

Figure 1.1: Diagram showing a summarised layout of this report
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Chapter 2

Literature Review

While force plates have been around for some time and have been studied fairly extensively,

their utility in new fields continues to expand. Force plate systems are commonly used to

measure multi-axial ground reaction forces (GRFs) used in biomechanical analysis of gait an

various other motor activities in humans [1]. Furthermore, in aiding studies of biomimicry and

bio-inspired robotics, force plates offer a highly effective means of studying GRF interactions

experienced by animals during high speed transient manoeuvres as they provide a non-invasive

means of capturing data.

Following a brief explanation of GRFs, a review of the academic and commercial applications of

force plate technology is presented, including literature pertaining to the study of humans and

animals alike. Thereafter, insight is provided into some of the other mechanisms of estimating

GRFs. A refined investigation is then conducted on the specific sensing technologies used in

force plates and a review of the current state-of-the-art in this technology. Finally, a summary

of the findings of this chapter is presented in Section 2.6.

2.1 Ground Reaction Forces

A GRF can be considered a three dimensional vector that characterizes the force exerted by

the ground on a body in contact with it. More specifically, it represents the resultant reaction

force of the distributed load applied the body interacting with the surface (as depicted in Figure

2.1). The three orthogonal vectors that form the resultant GRF are measured in the vertical

(z), longitudinal or anterior-posterior (y) and lateral or mediolateral (x) axes. The centre of

pressure (COP) is defined as the point of application of the GRF vector (in the xy plane).
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Figure 2.1: Diagram illustrating the resultant GRF (F ) and CoP of a distributed load (frame
(b)) measured by a force plate [60]. The free torque induced (Tz) is also indicated.

2.2 Biomechanics of Physical Rehabilitation in Humans

2.2.1 Physical Injury

GRFs have been used extensively to quantify anomalous limb loading in humans in order to

gain greater insight into internal joint stress and potential causes and indicators of injury [2].

The combination of large, impulsive forces and the high frequency of absorbing/exerting force

during landing in sport produces significant stress in joints in the lower limbs [3].

The vertical GRF (VGRF) experienced by a subject during landing is frequently used to

determine parameters such as the maximum force and time to maximum force exerted. These

parameters provide an indication of the intensity and duration of stress experienced on a

subject’s limbs and internal joints [2]. Importantly, large and impulsive VGRFs have been

correlated to an appreciable increase in the risk of sustaining an anterior acruciate ligament

(ACL) injury - a particularly serious injury prevalent in many sports. More specifically, a study

by Hewett et. al. [5] showed that peak VGRFs were, on average, 20% larger in females who

had sustained ACL injuries compared to uninjured individuals [2]. Furthermore, Impellizzeri

et. al. showed that testing GRFs (and most importantly, the VGRF) in jumping and landing

techniques has proved a reliable method for assessing bilateral strength asymmetry [6]. It was

shown that observing asymmetries and other abnormalities in the force profile of the left and

right legs during landing could be used to identify potential injury risks, as well as the ability

to predict recurring injury (such as tearing in ACL reconstructions) [7].
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2.2.2 Force Plates and Athletic Performance

Force plates are particularly useful for evaluating kinetic behaviour of an athlete’s movement by

providing information about external forces involved in their movement. GRFs are often used

to provide a quantitative evaluation and means of tracking an athlete’s development or ability

to execute a particular skill [1]. Furthermore, studies show that GRFs and metrics derived from

them provide significant correlation to agility and sprint performance [1] and provide insight

that mere visual cues may not.

2.2.3 Clinical Diagnosis of Human CNS Disorders

Posturography

Posturography incorporates the techniques used to quantify control of posture in an upright

stance in either static or dynamic conditions with the aid of a force plate [8]. This technique is

used as a specialized method of clinical assessment of feedback mechanisms of the human CNS

in the control of posture and balance. This technique is both applicable to healthy individuals,

where it is used in physical education and sporting analysis, as well as those who suffer from

medical disorders with which impairments in gait and balance are associated. Multiple sclerosis

(MS) is one such disorder that causes damage to the CNS of the patient, leading to impairments

in postural response and capacity to maintain balance [8]. Increased fall tendency and balance

impairment are frequently observed in patients with MS. It is often desirable to quantify these

characteristics in trying to reach a diagnosis in patients where there is a suspicion of motor

disorder following an injury or disease that has lead to a potentially compromised CNS.

Static posturography is commonly used to assess the postural sway of the centre of pressure

(COP) of the patient - the point of application of the resultant GRF exerted/experienced by

the patient). Metrics such as the velocity of the COP in the lateral (x and y) axes, the sum of

displacements of the COP and the 95% confidence ellipse area of the COP are commonly used

in such assessments. Static posturography provides a linear, objective and reliable quantitative

assessment of static balance [8] and from a more qualitative perspective, the displacement of

the COP represents an indicator of the energy expenditure required to maintain balance [8].

Human Gait Analysis

Another extensively used technique in diagnosing motor-related disorders in humans is gait

analysis. Tahir et al [9] explored the use of machine learning techniques to classify patients

with Parkinson’s Disease (PD) by observing gait patterns obtained with force plate data.

In particular, the use of artificial neural network (ANN) and suport vector machine (SVM)

classifiers (as explored in Chapter 3) were used. Motor-related PD is a degenerative illness

of the brain that hampers the patient’s ability to execute simple motor tasks such as walking
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and balancing [10]. It has been shown that motor PD significantly affects a patient’s gait by

reducing speed, stride length and range of movement during walking and power generation

during push off in the ankle power profile [9]. The aforementioned study used the following

kinetic features in attempting to classify (diagnose) patients with PD by distinguishing them

from healthy patients:

• Maximum vertical heel contact force (Fz1)

• Minimum vertical mid-stance force (Fz2)

• Minimum vertical push-off force (Fz3)

• Maximum horizontal heel strike force during braking (Fy1)

• Maximum horizontal push-off force (Fy2)

Figure 2.2: Graphs to show force-time curves for vertical (Fz) and anterior-posterior (Fy) GRF
components for experiments conducted in [9]. The kinetic features listed above are indicated
on the curves.

Results showed that a SVM regressor with a polynomial kernel and a feed-forward ANN achieved

95.8% and 90.6% classification accuracy respectively based on the above kinetic features alone.

Fusion of the kinetic features with basic spatiotemporal features such as stride time, cadence

(steps per minute), step length and walking speed allowed for the highest accuracy of 98.2%

using an SVM with a Gaussian radial basis function (RBF) kernel [9]. It is interesting to note,

however, that using force information from only two axes (z and y) in the kinetic feature tests

allowed for a classification accuracy of very close to the maximum.
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A second study by LeMoyne et. al. [12] showed that in attempting to classify muscle history

dependence in patients with a particular prosthesis, the same kinetic features as with [9] were

studied - indicative of the usefulness of these features. Results in this study showed that when

incorporating both kinetic and temporal features, classification accuracy increased from 85%

when using purely kinetic features to 91% with the fused data set. Again, it is worth noting

that only two components (vertical and anterior-posterior) of the GRF vector measured by the

force plate were used in this classification study.

Following the discussions above, it is evident that the use of force plates in the study of human

biomechanics is extensive. However, the utility of force plates is not limited to the study of

humans alone; their ability to measure GRFs in an extremely accurate and non-invasive manner

has contributed to their popularity in the study of legged animals. As in the study of cheetahs

in [22], force plates have facilitated the acquisition of information such as the stride time, force

profiles and the distribution of body weight of animals during rapid manoeuvres. Such insight

offered by force plates has been indispensable in the design and development of bio-inspired

robotics and the field of biomimicry as explored in Section 2.3 below.

2.3 Force Plates and Bio-inspired Robotics

Many of the most complex manoeuvres performed by legged animals are initiated through

interactions with the ground. Importantly, detailed knowledge of GRF profiles induced during

hopping, jumping, running and landing of animals that can be acquired using force plates

presents invaluable information to researchers in the design of bio-inspired robots. In [16], a

force plate was used to investigate how domestic cats are able to manipulate their landing from

various heights. It was found that cats adopt measures to deliberately extend the time of impact

when landing in order to reduce the force experienced. This can be explained by the equations

2.1 and 2.2 relating the force experienced by a body, F⃗ , to its change in momentum, ∆p⃗ = m∆v⃗:

J =

∫ t2

t1

F⃗ dt =

∫ t2

t1

ma⃗ dt (2.1)

and if F⃗ and a⃗ are constant:

J = F⃗∆t = m∆v⃗ =⇒ F⃗ =
m∆v⃗

∆t
(2.2)

where ∆t is the duration of time that the body is subjected to force F⃗ and a⃗ and v⃗ represent the

body’s resulting acceleration and velocity respectively. Note that J = ∆p⃗. That is, the impulse

J imparted by a force on a body is equal to that body’s change in momentum. Furthermore,

[16] reported that the force plate data showed four distinct spikes in the measured VGRF

profile. The author theorizes that the cat uses its four legs independently to effectively adjust

its mechanical damping during impact [16]. This demonstrates how force plates are not only
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effective in measuring the magnitude of GRFs induced during impact, but also the intricate

profiles and transient responses relevant to the design of mechanical and control systems in

robots.

Liu et. al. [15] explored the use of GRFs in the developing the dynamic locomotion of their

kangaroo-inspired biped robot. Force data acquired was used in analysis of the kangaroo’s

gait and provided insight into the synchronization of the animal’s legs during its characteristic

hopping motion. Dynamic centre-of-mass (CoM) trajectory models were consequently developed

with the aid of this information [15]. This reveals another important use of force plate technology.

2.3.1 The Cheetah: an Inspiration for Robots

Arguably one of nature’s most phenomenal athletes is the cheetah; a true master of speed and

agility. Remarkable quadruped robots such as MIT’s Cheetah 3 and Boston Dynamics’ WildCat

(the fastest quadruped robot in the world [14]) are testament to the attention that this incredible

animal has attracted in the field of bio-inspired robotics at state-of-the-art institutions.

Figure 2.3: Image of a cheetah captured during high speed pursuit [61]

The interest in this amazing animal extends to UCT’s own Mechatronics Laboratory with studies

such as [17, 18, 19, 20] that have explored the integral role of the cheetah’s tail in rapid dynamic

manoeuvres. Current research in this laboratory is exploring the development of a fully-fledged

quadruped cheetah robot and as explained above, detailed GRF profiles obtained from real

cheetahs through the use of force plates would be of great use in the design and development

of mechanical, control and trajectory planning systems, amongst others. This necessitates a

further investigation into the dynamic motion of the cheetah as presented in Section 2.3.2 in

order to guide the design specifications (such as sampling time and mechanical considerations)

in this project.
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(a) MIT Cheetah-3 [13] (b) Boston Dynamics WildCat [14]

Figure 2.4: Images showing quadruped robots inspired by the cheetah

2.3.2 Dynamics of the Cheetah and other Quadruped Animals

2.3.3 Motion of the Cheetah

The cheetah is generally accepted as the world’s fastest terrestrial animal (with a fastest recorded

speed1 of 29m.s−1 or 104.4 km.h−1 over a 200m track [22]) and is thus one of the most challenging

yet exciting creatures to study.

Researchers from University of London’s Royal Veterinary College conducted a detailed study

comparing the kinetic and spatio-temporal characteristics of the cheetah and the racing greyhound

(Canis familiaris) during high speed gallop. Although the racing greyhound gallops at a

significantly lower top speed of 17m.s−1, it shares very similar size, weight and gross morphology

to the cheetah [22] and was thus chosen for comparison in the study. Hildebrand et al report

that a cheetah running at 25m.s−1 completes a stride in only 0.28s with a stride length2 of 7m

[21].

Limb Forces During High Speed Gallop

The aforementioned study in [22] used an array of high-end Kistler force plates to measure

GRFs experienced by the cheetahs and greyhounds during gallop. The experimental setup used

in the study is presented in Figure 2.5 below:

In this study, 40 SLCs (single limb contacts where only one limb was in contact with a single

plate) for the cheetah and 110 SLCs for the greyhound were collected. With increasing speed,

both hind limbs experienced an increase in peak limb force but the vertical impulse experienced

1fastest speed recorded in a scientific study as of the time of writing of [22] (2011)
2stride length here is defined as the displacement between successive ground interactions of the same limb
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Figure 2.5: Diagram from [22] illustrating the experimental setup used in this study. It shows a
series of force plates which the animals were enticed to run across by a mechanically-retracted
lure. The setup also shows the high speed cameras used to capture footage for kinematic
analysis.

remained unchanged [22]. It is evident that limb forces were increased to counteract decreasing

stance (ground contact) time (as can be explained by Equation 2.2). Peak vertical hind limb

forces experienced by the cheetah increased from 200 to 900N as speed increased from 8.7m.s−1

to 17.8m.s−1 (as measured in the experiment) [22]. Interestingly, the front limbs showed no

correlation between peak vertical GRF and increasing speed with peak vertical GRF remaining

in the region of 500 and 900N over the full speed range [22]. It was found in [22] that the

cheetah supports 70% of its body weight on its rear limbs during gallop near 18m.s−1. It is

believed by the author that the particularly flexible spine of the cheetah allows it to position its

rear limbs further forward and thus, more directly below its centre of mass [22]. This strategy

would allow for more grip during acceleration (push off of the hind limbs). This demonstrates

how, apart from its obvious quantitative value, detailed GRF data measured from force plates

can be used by researchers to infer reasons for the behaviour and anatomical characteristics of

animals during complex manoeuvres.

The vertical and anterior-posterior GRF profile for the cheetah and greyhound during gallop of

>14m.s−1 is depicted in Figure 2.6 below. The curves of larger positive magnitude (for both

the cheetah and greyhound) represent the vertical GRF component experienced. The mass

and other physical characteristics of the cheetahs and greyhounds observed in this study are

presented in Appendix D.1
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Figure 2.6: Figure from [22] modified by the author. Graphs show mean vertical and anterior-
posterior GRF curves (with dotted ± standard error curves) for SLCs of each limb for cheetahs
(red) and greyhounds (blue) at gallop speeds between 14m.s−1 and 18m.s−1

Sampling Requirements

The current literature does not suggest any particular minimum sampling rate required in

order to accurately capture the GRFs experienced by cheetahs during high speed manoeuvres.

The study observing the motion of the cheetah and racing greyhound in [22] used force plates

sampled at a frequency of 1kHz. For sports science and human gait analysis applications,

Suchomel reported that several sampling rates ranging between 200Hz and 1kHz were used in

various studies and that while some authors claimed that 200Hz is sufficient for posture and

low speed gait analysis, others claimed that sampling rates of at least 500Hz were required to

capture enough resolution (sufficient data points) to accurately reconstruct force-time curves for

impulsive interactions [1]. Nyquist’s sampling criterion states that, in order to prevent aliasing

in a sampled signal, the minimum sampling rate of applied to the continuous signal is governed

by:

fs > 2fmax (2.3)

where fs is the sampling frequency and fmax is the maximum frequency in the signal.

2.4 Alternate mechanisms for GRF Estimation

Previous sections in this chapter have reviewed some of the applications of force plates. However,

in order to validate the suitability of force plates in previously mentioned applications, an

investigation into alternate mechanisms of estimating GRFs must be conducted.
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2.4.1 Inertial Sensing

Various studies have investigated the use of MEMS IMUs in attempting to estimate 3-axis

GRFs [23, 24]. Karatsidis et. al. were able to achieve RMS errors of 5.3%, 9.4% and 13.1% in

estimating vertical, anterior and mediolateral GRFs respectively [24]. The study was conducted

with 11 healthy male volunteers - each of whom wore a lycra suit with 17 IMU modules

strategically placed in order to provide the required data for the kinematic model used. Having

defined the kinematic relationships and intertial properties of all body segments in the model,

the total external GRF, Fext, was estimated using Newton’s second law:

Fext =
N∑

i=1

mi(ai − g) (2.4)

where mi and ai were the mass and linear acceleration of the COM (glossary) of each model

segment respectively and N was the number of total segments (16 in this study) [24]. The total

external moment applied, Mext, was also calculated using Euler’s rotation equation for rigid

bodies:

Mext =
N∑

i=1

(Jiω̇ + ωi × (Jiωi))−
N∑

i=1

Ki∑

j=1

(rij × Fij) (2.5)

where Ki was the number of end points in each segment (joints and contact points), ωi and ω̇i

were the angular velocities and accelerations of each segment respectively. [24] Ji represents

the matrix of inertias around the COM of each segment, rij the position vectors between COM

and end points of the segments and Fij the resultant force in the end points of each segment

[24]. This shows a feasible approach to estimating GRFs (and reaction moments) using direct

computation instead of abstracting this to machine learning techniques. However, it should be

emphasized that 17 IMUs are required to achieve the stated results and the system requires

extensive calibration measures to allow for reliable and repeatable performance. Furthermore,

the system relies on wearing of the suit to keep the inertial sensors at fixed, predefined points.

Similar studies performed in [23, 25] show promising results, however in each case, there are

practical limitations that render intertial sensing as a means for accurate GRF estimation

unfeasible for the objectives of this project. The need for many, precisely positioned IMUs

and/or a specialized sensor suit is an example of limitations in [23] and [25]. In other studies,

such as in [25], only the vertical GRF component could be reliably estimated using intertial

sensing methods.
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2.4.2 Discrete Pressure Mapping

Researchers at MIT investigated a novel force sensor design comprising of an array of barometric

pressure sensors embedded in a flexible urethane rubber foot weighing less than 100g. The

physical structure of the device is shown in Figure 2.7 below.

Figure 2.7: Diagram from [26] illustrating the working principle of the novel rubber force sensor
designed in this study. A cross-sectional view of the sensor is shown with the urethane rubber
being deformed by an applied force. The embedded array of barometric pressure sensors (black
rectangles) mounted on the PCB substrate (green rectangle) is shown.

The composite construction exploits the predictable rubber deformation and the resulting

pressure distribution in order to estimate 3-axis force measurements [26]. With the aid of a

simple feed-forward neural network to map input pressure readings to 3-axis GRFs, the sensor

was able to measure vertical GRFs up to 300N and a maximum of 80N in the two lateral axes.

The experimental results indicating the performance of the sensor are presented in 2.1 [26].

While not commercially produced at this stage, the prototype sensor was produced for under

$100 (USD) - a promising advancement in the pursuit of a more affordable 3 axis force sensor.

Table 2.1: Table to show experimental results indicating performance of the sensor designed in
[26]

Max

Force [N]

RMSE Max Error

[N] [%FS] [N] [%FS]

Fx 80 2.95 3.69 14.95 18.62

Fy 80 4.73 5.91 23.14 23.14

Fz 300 1.98 1.98 14.90 4.99

2.4.3 Capacitive Force/Torque Sensors

There are a number of commercially produced capacitive force/torque sensors that are currently

available. These sensors typically come in small packages; a cylinder of diameter 80mm, height
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25mm and weight 350g would constitute a typical size [30]. These sensors exhibit excellent

sensitivity and linearity over their working range and several companies (such as ATI and

Robotiq) produce sensors capable of sensing several thousand N of force with with sensitivity

in the mN (milli newton) range.

Figure 2.8: Image of an industrial capacitive force/torque sensor (Axia80) made by ATI
Industrial Automation from [30]

This technology typically utilizes two frames embedded in the sensor - one fixed and one movable.

The frames are attached to a deformable component which is modelled as a spring and when

forces/torques are applied to the sensor, deformation (strain) can be measured by capacitive

elements. This can be understood by observing Equation 2.6 for the capacitance of a parallel

plate capacitor below:

C =
ϵA

d
(2.6)

where C is the capacitance of the parallel plate capacitor, ϵ is the absolute dielectric constant,

A is the area between the capacitor plates and d is the displacement between the plates. Small

deformations as mentioned above lead to varying displacement d between the capacitor plates

and can be measured as a change in capacitance.

While these sensors perform particularly well in almost all performance characteristics, their

drawback is their exorbitant cost. They are typically intended for industrial automation and

robotics applications where high precision, reliability and mobility are required.

Several studies [27, 28] have explored the production of lower cost multi-axial GRF sensors

and have managed to achieve particularly promising results; sensor designs with comparable

accuracy and sensitivity to industrial models (such as the ATI sensors mentioned aboved) have

been created and tested in these studies. However, the sensors developed in [27, 28] (and several

others) have the limitation of the range of force that can be sensed - typically a maximum normal

(vertical) GRF force in the order of 10 newtons is detecable and thus, these technologies are

not suitable for this project where forces in the region of several hundred newtons are expected.
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2.5 Force Plates

Force plates are widely considered the gold standard in measuring GRFs for a wide range of

applications due to their excellent accuracy and repeatability. While most internal designs of

commercially-sold force plates are proprietary and kept secret, common sensing technologies

that form the basis of transducers in commercial force plates are explored below.

2.5.1 Sensing Mechanisms in Force Plates

Hall effect

In Hall effect variants, multiple Hall effect sensors and magnets are arranged within the force

transducer to measure changes in the magnetic field experienced caused by deflecting spring

elements under exertion of externally applied forces and moments [31]. The draw back for this

simpler design is that only lower sampling rates (compared to strain gauge technology) are

attainable and plates with this technology typically exhibit lower stiffness, resulting in a lower

natural frequency of the platform and more risk of resonant vibrations [31].

Piezoelectric

Piezoelectric force transducers rely on piezoelectric crystals, such as quartz, at the core of the

sensor. When subjected to an external force, piezoelectric materials produce an electric charge

proportional to the mechanical stress exerted on them. This property is exploited to determine

applied forces and moments by arranging separate piezoelectric materials in configurations such

that they are sensitive to stress in particular directions. A particularly desirable quality of piezo

sensing elements used in force plates is that they cover very large measuring ranges and can

be made to be only a few millimetres thick [33]. Furthermore, due to their exceptionally high

rigidity, piezo sensors exhibit negligible deformation under operational loading conditions and

are thus can be flexibly integrated into a variety of structures. Unfortunately, however, piezo

transducers are particularly prone to charge drift over time (up to as much as 10N per minute

[33]) and require frequent zeroing or high pass filtering to suppress drift.

Strain Gauges

Strain gauge technology is most popular in high-end strain gauges and provides the most

accurate and flexible force measurement [31]. In order to understand how strain gauge sensing

works, the equation for the resistance of a material with certain geometry is defined below:

R =
ρl

A
(2.7)
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where ρ represents the resistivity (a property of the material), l the length of the material and

A its cross sectional area. Strain gauges are resistive transducers that vary their resistance

in response to an applied mechanical strain, where strain ϵ = ∆l
l represents the ratio of the

deformed length of a material to its original length in response to mechanical stress. The most

widely used strain gauge structure is the bonded metallic pattern as depicted in Figure 2.9

below. The metallic foil grid pattern as seen in Figure 2.9 above maximizes the amount of

Figure 2.9: Diagram of a bonded metallic strain gauge from [34]

resistive material subject to strain in the direction parallel to its longitudinal axis. The metallic

grid is bonded to a backing material called the carrier which is mounted directly onto the test

specimen. This allows strain experienced by the test specimen to be transferred directly to the

gauge which responds with a linear (proportional) change in resistance [35]. Another important

parameter of a strain gauge is its sensitivity to strain which is quantified by the gauge factor S.

This is defined by equation 2.5.1 and is the ratio of the fractional change in resistance to the

fractional change in length (strain) [35]:

S =
∆R/R

∆l/l
=

∆R/R

ϵ
(2.8)

where R and l are as previously defined. Strain gauges are typically connected in a Wheatstone

bridge configuration depicted by the circuit shown in Figure 2.10. A full Wheatstone bridge

comprises of four strain gauge elements and allows for the maximum differential voltage change

in response to changing resistance of the gauges. Additionally, it allows for good immunity to

temperature drift as all strain gauges will react almost identically to changes in temperature and

will thus experience very little relative changes in their resistance (provided they are identical

in structure and are exposed to the same source of heat which is near uniform with respect to

their geometry).
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Figure 2.10: Circuit diagram from [35] of a full Wheatstone bridge with four sensing elements.
Vex represents the bridge excitation voltage and Vo the output differential voltage.

2.5.2 Current State-of-the-Art

The BP400600 force platform made by AMTI, a prominent force plate manufacturer, is considered

to be one representative of the current state-of-the-art based on its specifications/performance

[31]. It uses many thin-walled cylindrical sensing elements, each of which are coupled with

strain gauges to isolate signals produced by individual forces and moments - allowing them to

be measured independently [31]. Furthermore, signal conditioning - including amplification and

filtering - most commonly forms part of the product and hence, is performed within the plate

structure so as to allow for processed signals to be measured directly by a computer or digital

serial interface. To illustrate the performance of a typical industrial grade force plate, relevant

specifications of the AMTI BP400600 force platform are shown in 2.2 below:

Table 2.2: Relevant performance specifications of the AMTI BP400600 force plaform

Parameter Value

Fx, Fy capacity [N] 2224

Fz capacity [N] 4448

Fx, Fy sensitivity [µV/(V*N)] 0.67

Fz sensitivity [µV/(V*N)] 0.75

Measurement accuracy [% of load, all channels] ±0.25

Crosstalk [%, all channels] <2

Non-linearity [% full scale, all channels] ±0.2

Hysteresis [% full scale, all channels] ±0.2

Furthermore, the platform measures 400 x 600 x 82.55 mm (width x length x height) and weighs

31.82kg. A picture of the platform is show in 2.11 below.
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Figure 2.11: Image of the BP400600 force platform made by AMTI [31]

2.5.3 Force Plate Pricing

While sophisticated sensing technology as mentioned in 2.5 above allows for very accurate

sensing and low cross-talk, industry-standard force plates such as the BP400600 carry an

extremely high cost. Considering that a core criterion of this project is the cost of the developed

system, due consideration must be given to the cost of existing force plate systems to form a

reference price range.

Figure 2.12: Image of the Vernier Force Plate [32]

One particular low cost platform is the Vernier Force Plate - a product intended for experimentation

in schools and other teaching environments. This product is only able to measure the magnitude

of the normal/vertical component of the GRF vector (and not the individual 3 axis force vectors)

to a maximum of 3500N in compression and 850N in tension [32]. This product is priced at

$374 (USD) [32] - equivalent to R5236 assuming an exchange rate of R14/$.

Force plates manufactured by companies such as AMTI and Kistler (such as the strain-gauged-

based AMTI BP400600) represent the gold standard in current commercial force plate technology

and these models are typically priced in the region of $30 000 - $40 000 (USD) [36]. Cheaper

models made by manufacturers such as ACME International are priced in the range of $8000
(USD) [36]. A quotation (found in Appendix D.1) obtained from HiTech Therapy CC (a
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South African company selling rehabilitation and exercise products) quotes the price of the

AMTI BP400600 at R300 000 (as of the date of writing this report). A slightly larger AMTI

model (1200x1200 mm top plate area), the BP12001200, with almost identical performance

specifications, was listed at R940 000 in this same quotation.

2.6 Summary of Literature

This review of relevant literature has explored the various applications of force plates as currently

used in practice. The use of force plates in biomechanical analysis of human motion and their

utility in athletics and sports science rehabilitation applications has been noted. Furthermore,

the use of force platforms in the clinical diagnosis of human disorders causing deficient motor

function such as Parkinson’s Disease and MS has been explored with reference to studies in

[12, 9, 10]. From these findings, it is evident that force plates perform an integral role in the

study of human biomechanics and their practical use in sports science and clinical pathology is

extensive.

Biomimicry has proven to be an exciting driver for innovation in modern robotics. Robotic

imitations of some of nature’s most impressive athletes such as the MIT Cheetah 3, as outlined

in [13], are not only impressive academic achievements but also present exciting prospects for

a number of practical applications such as search and rescue operations. They are indicative

of what can be learnt from nature and millions of years of refinement in natural technology

through evolution.

Previous studies performed on the dynamics the cheetah’s motion [21, 22] provide great insight

into kinetic and spatio-temporal characteristics of these animals during high speed gallop.

Findings showed that peak normal (vertical) GRFs of approximately 900N were recorded by the

cheetahs in [22] and peak anterior-posterior shear forces of approximately 150N according to

findings in the same study. It is worth noting that the vertical GRF profile, as well as the vertical

impulse and other derived quantities, were of main focus in [22, 21] but the anterior-posterior

GRF component is also observed during brake and take off of the limb in contact with the

ground. Interestingly, these studies do not consider the third (mediolateral) GRF component

in analyzing the cheetah’s motion despite the fact that full 3 axis force platforms were used.

It is presumed that this is due to the fact that this component was of negligible magnitude

relative to the other two GRF components or did not provide any meaningful information in

the experiments conducted in [22, 21].

Apart from force plates, several techniques for sensing and measuring GRFs have been reviewed.

While most of these alternate techniques achieve sufficient accuracy, many have shown to be

impractical for use in the applications outlined in sections 2.2 and 2.3.1. Sensing using inertial

measurements as in [24] required 17 strategically placed IMUs and would be impractical as a

means of gathering GRF data even on captively-bred cheetahs, let alone those in the wild. Even

if they could be placed accurately on the animals which would likely require sedation, the animals
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would, in all likelihood, not run naturally as they would when unhampered by foreign devices

placed on them. Similarly, capacitive force sensors traditionally used in industrial automation

applications such as the ATI Axia80 (Figure 2.8) are fully capable of accurately measuring 3

axis GRFs and moments, however they are too large and bulky to place directly on animals or

human subjects without hampering motion as described previously. Furthermore, these sensors

are extremely costly [36].

While a review of the state-of-the-art in force plate technology revealed that many extremely

high precision platforms exist and present a viable mechanism for measuring GRFs in many

applications, a review of the prices of these industrial grade plates conducted in Section 2.5.3

revealed how exorbitantly expensive these devices currently are. In conclusion, it is evident that

there exists a need for a robust, accurate and practical low cost force plate capable of measuring

3-axis GRFs.
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Chapter 3

Theory Development

3.1 Machine Learning for Regression

Machine learning techniques such as neural networks and other mechanisms explored in subsequent

sections below present an extremely powerful set of tools in regression problems such as the

challenge faced in this project. The real power of this approach lies in the fact that these

techniques require little to no knowledge of internal system dynamics or an explicitly defined

input-output transfer function.

Consider a dataset with N observations, each with an associated response or target yi. In

general, each observation will be a vector of p features (or predictors, in the case of a testing

or query observation), denoted xi = [xi1, xi2, ..., xip]T for observation i. The target for each

observation may be a scalar, yi, or a vector yi = [yi1, yi2, ..., yiq]T in the case of multi-value

regression (or classification) problems with q outputs. The objective is generally to model

the relationship between predictors and targets so as to most accurately1 predict the system’s

response for a given set of features [41]. This approach represents a black box model of the

system - it is assumed that the system can plausibly be defined by an underlying mathematical

structure but the objective is not to explicitly uncover this structure but rather to encode it in

a model or network using only a considerable number of observations and their corresponding

responses. The aim is thus to rather design a model or hypothesis, as defined in the language

of modern analytics [41], to discern patterns in the data collected that will allow for prediction

of future responses of the system when target responses are no longer available.

1Accurately is used with caution here as the notion of accuracy can be specific to the problem at hand. Typically,
though, in regression problems, accuracy refers to how closely predicted system responses match their actual
counterparts. Quantitative measures of this are explored in subsequent sections.
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3.1.1 Linear Regression and General Linear Machines

Linear regression models assume linear relationships between the response variable y and the

p dimensional vector of regressors xT = [x1, ..., xp]. The regressors are strategically chosen

(linearly independent) basis functions that characterise the type of regression. To better

illustrate this, consider the following equation

yi = β01 + βxi1 + ...+ βxip + ϵi = xT
i β + ϵi (3.1)

This may be expressed in matrix notation by the following equation

y = Xβ + ϵ (3.2)

where

• y is the response vector containing observations of the dependent variable [37]. This is

not to be confused with the vector of predicted outputs, typically denoted ŷ.

• X, typically termed the ‘design matrix’, is a matrix of p-dimensional row vectors (corresponding

to each observation) containing basis functions called regressors [37]. Most commonly, the

first regressor in each row is a constant (xi0 = 1 for i = 1, ..., n where n is the number

of observations). This is to allow for a non-zero intercept (βi0) in the linear model [37].

Often, non-linear basis functions (regressors) are selected such as nth order polynomial

terms or Gaussian kernels. Regardless of independent basis functions, the model remains

linear if it is linear in the vector β [37].

• β is a (p+1) dimensional vector (or p dimensional if the constant first regressor is included

in the model) containing the regression co-efficients.

• ϵ is a column vector containing error terms ϵi for each observation. This parameters

contains all other influences on the response variable y, other than that of the regressors.

The objective is to minimise this error term for each observation while still maintaining

sufficient generalisation to other data sets.

3.1.2 The Support Vector Machine (SVM)

Due to the detail and mathematical complexity required to thoroughly elucidate the SVM

algorithm and its associated structures, as well as the fact that this model is not used extensively

in this project, only a brief introduction to this topic is presented in this report.

Considering a training data with N observations as detailed in Section 3.1. A particularly

popular method introduced by Vapnik in 1995 [38] is known as ϵ-SV regression (support vector
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regression using an epsilon-insensitive cost function). This SVM strategy is explored in this

report as the MATLAB implementation used in this project leveraged ϵ-SV regression.

This method seeks to produce a function f(x) whose estimated outputs deviate from the targets

(true responses) yi by at most ϵ for each observation i [39]. The notion of the predictor

being epsilon-insensitive means that it will treat all errors within the range yi ≤ |ϵ| as

zero. Following the notation presented in [39], consider a linear function for f(x)

f(x) = w · x+ b (3.3)

where w and b are analogous to β and ϵ in Section 3.1.1 respectively. The first objective is to

obtain a maximally flat2 predicted response which can achieved by minimising the norm of the

weights vector w [39]. This resolves to the following convex optimisation problem:

minimise
1

2
∥w∥2

subject to

⎧
⎨

⎩
yi − β · xi − b ≤ ϵ

β · xi + b− yi ≤ ϵ

(3.4)

This implies that the optimisation problem is feasible and that a function f actually exists that

can produce estimated responses to within a precision of ϵ for each observation [39]. Practically,

this is often not the case and consequently, the idea of slack variables ζi and ζ∗i is introduced

to deal with otherwise unfeasible constraints. The formulation presented in equation 3.4 above

is thus adapted to

minimise
1

2
∥w∥2 + C

p∑

i=1

(ζi + ζ∗i )

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yi − β · xi − b ≤ ϵ+ ζi

β · xi + b− yi ≤ ϵ+ ζ∗i

ζi, ζ∗i ≥ 0

(3.5)

The constant, positive parameter C controls the balance between tolerance of prediction-target

deviations greater than ϵ and the flatness of the estimated response of f . This is termed the

soft margin loss setting and is clarified by Figure 3.1 below

As seen above, only prediction deviations beyond the shaded ϵ region are penalised linearly

(proportional to the magnitude of their deviation beyond this region).

2a response that captures the behaviour of the response variable but with no oscillations or high frequency errors
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Figure 3.1: Visual representation of the soft margin loss principle for a linear ϵ− SV regressor
with slack variables ζi and ζ∗i [39]

3.2 Neural Networks

3.2.1 The concept of an artificial neuron

In order to understand the structure of a feed-forward neural network, it is imperative to first

gain a greater understanding of possibly the most fundamental unit; the artificial neuron. The

most basic type of artificial neuron is the perceptron - a model first developed in the 1950s and

1960s by Frank Rosenblatt [42]. Perceptrons take several inputs xi = [xi1, xi2, ...]T to produce

a single binary output y as indicated in Figure 3.2 below:

Figure 3.2: Diagram to show the basic structure of Rosenblatt’s perceptron - the most basic
artificial neuron [42]

Rosenblatt proposed the simple concept of weights [w1, w2, ...] to compute the perceptron

output. These weights are merely real numbers that quantify the importance or scaled contribution

of individual inputs in computing the output. The output y of the perceptron is binary - either

0 or 1 - and is determined by comparing the weighted sum of the perceptron’s inputs to a

predefined threshold value, θ, that forms another parameter of the perceptron. This formula

to compute the perceptron output y is captured by equation 3.6 below:

y =

⎧
⎨

⎩
0

∑
j wjxj ≤ θ

1
∑

j wjxj > θ
(3.6)

This relationship can be more elegantly expressed by writing the weighted sum
∑

j wjxj as the

dot product of input and weight vectors respectively, i.e. w · x =
∑

j wjxj . Furthermore, it
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is typical capture the perceptron’s decision threshold θ as a bias b of the perceptron, where

b = −θ. Equation 3.6 can now be expressed as:

y =

⎧
⎨

⎩
0 w · x+ b ≤ 0

1 w · x+ b > 0
(3.7)

It should be clarified that each perceptron has a vector of weightsw = w1, w2, ..., wq corresponding

to its q inputs x = x1, x2, ..., xq but only one scalar-valued bias b. The bias can be understood

as a tuning parameter that controls how easily a neuron will activate (produce and output of

1) or in biological terms, how readily that neuron will fire [42].

3.2.2 Activation functions

The perceptron model explored above was only capable of producing binary outputs. In trying

to tune the network weights and biases to fit the application at hand, suppose a small change

∆W in the weights of a particular perceptron was made. Ideally, the output y of the perceptron

(and consequently, the network) should change by some small amount ∆y as depicted in Figure

3.3. However, this is not the case, as even a small increment in these parameters could cause a

perceptron to flip its output from 0 to 1 (or vice versa). Furthermore, the obvious limitation

exists that this model cannot produce continuous outputs as would be required for regression

problems.

Figure 3.3: Diagram from [42] to show the desired network behaviour; tuning the network
weights by a small increment ∆w produces an comparably small increment in the computed
output ∆y

This leads to the introduction of the sigmoid neuron and activation functions. The sigmoid

neuron follows the exact same principle as the perceptron, however, it accepts both continuous

inputs for x = x1, x2, ..., xq and produces a continuous (non-binary) output by applying the

sigmoid function, σ(z) = 1
1+e−z , to the perceptron output. As such, the the output of the

sigmoid neuron becomes

y = σ(w · x+ b) (3.8)
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More generally, the activation function need not be the sigmoid function. Instead, several

common functions exist, as outlined in Table 3.1 below [41]. Graphs of these activation functions

and their gradients are plotted in Figure 3.4.

Table 3.1: Table to show commonly used activation functions and their algebraic formulae

Activation Function σ(z) Expression

Linear σ(z) = z

Sigmoid σ(z) = 1
1+e−z

Hyperbolic tangent σ(z) =tanh(z) = e2z−1
e2z+1

ReLU σ(z) =max(0, z)

Figure 3.4: Diagram from [41] to provide a graphical representation of commonly used activation
functions and their gradients.

The linear activation function σ(z) = z is particularly useful in the output layer of regression

networks where a continuous numerical output is needed. This is in contrast to classification

problems where sigmoid and hyperbolic tangent functions are more often used so that the

output behaves more like a probabilistic distribution [41]. However, non-linear activations are

commonly used in hidden layers of both regression and classification problems. The activation

function gradients observed in 3.4 above reveals that for very large inputs, there is very little

change in value of the activation function [41] - closer to the desired behaviour described in

Figure 3.3 above.

3.2.3 Network architecture

Following the notation used in [42], let alj signify the jth neuron in the lth layer of a regular

feed-forward neural network with J − 1 hidden layers. The network structure can be expressed
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by the feed-forward updating equation in 3.9 below:

alj = σl(

dl−1∑

k=1

al−1
j wl

kj + blj) where l = 1, 2, ..., J ; j = 1, 2, ..., dl (3.9)

where:

• σl() is the activation function applied to layer l

• dl−1 is the number of neurons in layer l − 1 (and dl the number of neurons in layer l)

• wl
kj denotes the weight parameter connecting the kth neuron in layer l− 1 and node j in

layer l

• blj is bias corresponding to the jth neuron in layer l.

The feed-forward equation is evaluated with the input vector xi = [xi1, xi2, ..., xip]T as values

associated to the first layer of neurons - the input layer in Figure 3.5 below. Algebraically, this

is expressed as a(0)j = xij where index i denotes the the ith observation and index j denotes the

jth data feature or input neuron.

(a) Basic network structure [42]

(b) Indication of a network weight

Figure 3.5: Diagram from [42] to show the basic architecture of a feed-forward neural network

3.2.4 Cost Functions and Learning

In order to train neural networks by tuning the many weights and biases that characterise

the relationships encoded in the network, it is crucial to define a mechanism to quantify the

predictive accuracy of the network - the ‘quality’ of the fit. In regression problems, a prediction

under a particular network configuration maps the inputs presented to the network to a vector

in the response vector space [41] (in the case of multivariate outputs). A natural measure of

the quality of the fit for each observation is the squared distance between the prediction and

actual response vectors for a particular observation [41]. This is quantified by the quadratic

mean-squared-error (MSE) cost function as defined below:
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CMSE(w,b) =
1

N

N∑

i=1

(yi − ŷi)
2 (3.10)

where N is the number of observations, yi is the vector of actual responses and ŷi is the vector

of predicted responses for the ith observation. The central objective of fine tuning weights and

biases of the network through training is to minimise the cost function C(w,b) [42]. Other cost

functions that are more suited to classification problems, such as the cross-entropy function,

are not explored in this project.

Gradient Descent

Gradient descent (and its derived methods explored in subsequent sections) is a simple but

powerful training algorithm used in neural networks to minimise a cost function. It forms the

basis of more powerful learning techniques such as the Levenberg-Marquardt algorithm which

combines gradient descent with the Gauss-Newton numerical method. In order to more easily

understand and visualise the strategy used by this algorithm, it is useful to consider an arbitrary

cost function C(v) of two variables where input vector v = [v1, v2]. This allows the cost function

to be visualised as a surface, as depicted in Figure 3.6 below.

Figure 3.6: Visual representation of a theoretical cost function surface C(v) of two variables
[41]

Finding a global minimum of C(v1, v2) analytically through calculus seems a plausible strategy

when considering a smooth and well-behaved surface of two variables as in Figure 3.6 above.

However, with even a modestly sized neural network with anywhere between thousands and

millions of weight and bias parameters, computing gradients of such a cost function (a function

of all these weights and biases) and finding a global minimum directly using calculus becomes

completely intractable.
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The gradient descent algorithm does use multi-dimensional gradients but does not attempt to

solve for stationary points directly. Consider an incremental change ∆C to the cost function:

∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v2
∆v2 = ∇C ·∆v (3.11)

where ∇C = ( ∂C∂v1 ,
∂C
∂v2

)T represents the gradient vector of cost function C. In order to reduce

the cost function, ∆C must clearly be negative. The gradient vector (or more specifically, the

negative thereof) determines he direction of ∆v that will yield the largest rate of decrease in

the cost function. Choosing

∆v = η∇C (3.12)

ensures this. A small (typically ≪ 1), positive parameter η, often termed the learning rate

[42], is introduced to limit the step size of each adjustment of the network parameters. An

optimal learning rate is often chosen empirically 3. This guarantees that the expression for

∆C in equation 3.11 is always negative and provides a method of following the gradient to a

minimum by consistently applying the update formula [42]

v −→ v′ = v − η∇C (3.13)

3.2.5 Bias-variance Trade-off and Regularisation

An important consideration in the design of a regression model is its complexity and embedded in

this, its predictive power. However, more important is the model’s ability to capture underlying

patterns in the training data presented to it and consequently, its capacity to generalise to out-

of-sample (unseen) data [41]. If a model is too complex, it will likely over fit (recall) the training

data presented to it (right plot of Figure 3.7) and will suffer from high variance across unseen

data sets [41]. If a model is too simple, it will not be able to capture underlying patterns and

nuances in the data and will under fit the data due to a large bias (left plot of Figure 3.7).

Regularisation is used to constrain the complexity of the model and provide greater robustness

and generalisation performance. One way to achieve this is to penalise the complexity of the

model. Consider including the following constraint on the network weights

∑

j,k,l

(wl
kj)

2 ≤ ϑ (3.14)

for some non-negative scalar ϑ where increasing ϑ produces a more constrained model. This

leads to a penalised cost function as defined below:

3choosing a larger learning rate will result in faster training (minimisation of the cost function) but also increased
risk of missing a global minimum in the cost function due to overshoot and less exploration of the cost function
domain

31



3.3. THE EXTREME LEARNING MACHINE (ELM)

Figure 3.7: Visual representation showing predictions (variable y) of regression models of varying
complexity (nth order polynomial terms for increasing n) with input variable x [43]. The middle
plot is typical of a model with a good balance of complexity and robustness (generalisation
ability).

C∗
MSE(w,b) =

N∑

i=1

(yi − aL1 )
2 + λ

∑

j,k,l

(wl
kj)

2 (3.15)

where λ corresponds directly to ϑ: increasing λ serves to constrain and simplify the model and

decreasing it has the opposite result.

3.3 The Extreme Learning Machine (ELM)

The ELM, first proposed by Huang [45], has become an popular area of research in the field

of computational intelligence. The ELM proposes an alternative to traditional SLFNs (single-

hidden-layer feed-forward networks) in regression and multi-class classification problems with

the significant and unique advantage that it does not require tuning of its hidden layer [45]. This

presents a significant advantage; gradient descent-based algorithms used in many traditional

learning mechanisms are often very slow and may converge to local minima [46] in minimisation

of the cost function. The performance of of a regularised ELM with a sufficient number of

hidden neurons4 is competitive with standard approaches such as neural networks leveraging

back propagation or the SVM and variations thereof [45][40]. However, the ELM is typically

hundreds to thousands of times faster to train than these comparable methods [40].

3.3.1 Structure

The basic structure of a SLFN ELM network is outlined in 3.8 below. An approach unique

to the ELM is its randomly selected weights and biases in its hidden layer [46]. As such,

these parameters need not be adjusted through algorithms like back-propagation (BP), but

instead, only the output weights are tuned through linear regression and pseudo-inversion [40]

as explored below.

4sufficient is clearly a relative and application-specific term. However, it is shown in subsequent sections how
empirically determining and optimal number of hidden neurons is a simple task due to the efficiency of the ELM.
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Figure 3.8: Diagram from [44] depicting the basic structure of a single hidden layer ELM. Only
the output weights are solved through linear regression (using pseudo-inversion)

For N distinct observations, N̂ hidden neurons and m target parameters in the target/response

matrix T

Hβ = T (3.16)

where

H =

⎡

⎢⎢⎣

σ(w1 · x1 + b1) . . . σ(wN̂ · x1 + bN̂ )
... . . .

...

σ(w1 · xN + b1) . . . σ(wN̂ · xN̂ + bN̂

⎤

⎥⎥⎦ ,β =

⎡

⎢⎢⎣

βT
1
...

βT
N̂

⎤

⎥⎥⎦

N̂×m

and T =

⎡

⎢⎢⎣

tT1
...

tTN

⎤

⎥⎥⎦

N×m

(3.17)

H is typically termed the ‘hidden layer output matrix’ [46] or ‘design matrix’ since column i of

H corresponds to the to the ith hidden neuron output with respect to the inputs x1, x2, ..., xN

[46].

3.3.2 Training through pseudo-inversion

Training of the ELM simply reduces to solving for the β[N̂×m] matrix of output weights. For

fixed, random input weights wi and biases bi, this task is equivalent to finding the least squares

solution β̂ for the linear system defined in 3.3.1:

∥Hβ̂ −T∥ = min
β

∥Hβ̂ −T∥ (3.18)

It follows that if N = N̂ ; that is, the number of hidden neurons is equal to the number of
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training observations; H will become a square matrix and will thus be invertible5. This implies

that the ELM can estimate training samples with zero error in such a case. Typically, though,

a N̂ ≪ N and consequently, H is a non-square matrix [46]. In such a case, it may be that

no β exists that exactly satisfies equation 3.3.1 and instead, the minimum norm least-squares

solution β̂ is found using pseudo-inversion as below:

β = H†T (3.19)

where H† is the Moore-Penrose generalised inverse of H [46].

3.3.3 Singular Value Decomposition and Regularisation

As discussed in previous sections, regularisation is a particularly important concept used to

preventing over fitting and ensure robust generalisation of performance across out-of-sample

data. Singular value decomposition presents an elegant means of computing the Moore-Penrose

generalised (pseudo-) inverse as shown in equation 3.3.2. According to [46], it can generally be

used to perform this calculation in all cases - even when methods such as orthogonal projection

and the iterative method fail. Singular value decomposition applied to matrix H[m×n] yields

SV D(H) = USVT (3.20)

where U and VT are real valued, orthogonal matrices such that

UUT = I = VVT (3.21)

where I is the identity matrix. Consequently, the generalised inverse of a matrix H can be

calculated easily as

H† = (USVT)−1 = UTS−1V (3.22)

Since S is a diagonal matrix, its inverse S−1 is also diagonal but on its diagonal elements,

merely contains reciprocals of those of S, i.e. diag( 1
s11

, 1
s22

, ...) where s11, s22... are the diagonal

elements of S. In order to prevent numerical ill-conditioning in computation of equation 3.22,

a small value λ is typically added to the diagonal elements of S. However, this is almost always

done as a means of efficient regularisation regardless of potential ill-conditioning since with a

large number of hidden neurons required for adequate representational power, such models will

often over fit the training data [40]. Regularisation can be achieved efficiently by adjusting the

singular value matrix S as follows

S −→ S+ λI (3.23)

5provided H is non-singular
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where λ is the termed the ridge factor and can be optimised iteratively or tuned through LOO

(leave-one-out) testing [40]. Singular value decomposition is thus a powerful tool as it allows for

fast evaluation of prediction accuracy over a wide range of λ values without having to perform

any additional matrix inversions since only (S + λI) needs to be updated and the pseudo-

inverse reevaluated through simple matrix multiplication as in equation 3.22. This allows for

exceptionally rapid optimisation of λ [40].
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Chapter 4

Design Methodology and

Experimental Procedure

4.1 Design Methodology

This project consisted of several major stages that, while all interdependent, required different

broad skills. The design methodology in this project was broken down into the following main

subsystems:

• Mechanical design of the force plate

• Electronics and hardware pertaining to the data acquisition system

• Embedded software required to interface with the electronic hardware

• Design of the software used to unpack and analyse the data obtained

4.1.1 Conceptual Design and System Specifications

In each broad section of development as mentioned above, a conceptual or overview design was

conducted using knowledge developed from the literature review. This process was initiated to

properly establish the system specifications and to compare various components or mechanisms

that would be best suited to achieve these specifications. In the case of software design -

both at the embedded and computer-based post-processing levels - different strategies were first

considered and then implemented accordingly.
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4.1.2 Detailed Design

Once components and design strategies were established, a detailed design of each subsystem was

performed. For the electronic hardware subsystem, this entailed the development of prototypes

with the selected components and thereafter, detailed PCB designs. Software design began

with a broad overview of the functionality required and was then refined to the system diagram

presented in Figure 7.8 which clarified the intricacies of the system. Finally, a fully incorporated

and tested software suite was created. These processes were specific to the subsystem in

development and are explored in subsequent design chapters.

4.2 Experimental Procedure

This section section seeks to provide insight into the techniques and procedures used to test the

data acquisition system and and various aspects of the incorporated force plate system.

4.2.1 Simulations

The system designed in this project was, to a large extent, a novel one and no existing data

pertaining to the unique hardware configuration was available prior to development of the

operational data acquisition system. As such, few simulations could be performed until data

was gathered from the system. However, a FEM stress analysis was conducted on the mechanical

structure of the plate using Dassault Systmes SolidWorks in order to gain greater insight into

the platform’s simulated response to expected loading conditions.

4.2.2 Data Collection and Training

Once the data acquisition system was complete and tested to be operating reliably, a set of

systematic experiments were devised in order to thoroughly test the system. Broadly speaking,

experiments performed on the plate were conducted order of perceived complexity. In each

test, a working 3-axis capacitive force sensor (the OptoForce OMD-45-FH-2000N), hereinafter

referred to as the OF sensor, was used to generate truth data - a reference of the actual GRF

targets to be estimated by the plate. More detailed specifications of this sensor are given in

Appendix D.2. A diagram of the sensor extracted from [48] is shown in Figure 4.1 below.
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Figure 4.1: Diagram of the OptoForce OMD-45-FH-2000N 3-axis force sensor from [48].
Dimensions of the device are indicated in mechanical drawings of the top and side views thereof.

Single axis testing

Initially, only a single axis vertical force was applied to a single point on the plate and data

gathered accordingly. First, only a static vertical load was first applied by placing a weight of

known mass on the plate. Thereafter, more dynamic and random vertical forces were applied

through the used of a drill press and a rubber foot as shown in Figure 4.2 below. The press was

used in order to provide a truly isolated vertical force devoid of any lateral components that

would potentially obscure the z-axis data captured by the system.

Figure 4.2: Image of the experimental setup used for gathering data during single axis (vertical)
force tests. The switches were not yet installed at the time of taking this photograph.

Once performance was tested and accepted for experiments performed on a single point on the

plate, data was gathered using the setup presented in Figure 4.2 over a grid of 26 different

positions on the plate in order to gather data used to test the robustness of the system in its

ability to estimate forces applied regardless of the COP position (position of the applied force).
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4.2. EXPERIMENTAL PROCEDURE

Two axis testing

The next set of tests performed subjected the plate to a two axis force applied by the drill press.

Specifically, a force with purely vertical and mediolateral components (Fz and Fx) was applied

during these tests. This was achieved by rotating the mounting platform of the drill press by

θ = 30°relative to its zero position1, as depicted in Figure 4.3

Figure 4.3: Image of the experimental setup used for gathering data during two axis GRF
experiments. Vertical (Fz) and mediolateral (Fx) GRF component vectors are shown together
with the resultant GRF vector F .

Since the OF sensor was not mechanically fixed to the top of the force plate, it was susceptible

to sliding (translation) across the plate when lateral forces were introduced. In order to prevent

this undesirable lateral translation, the OF mounting brace depicted in Figure 4.4 was designed

and laser-cut. This brace was used in all multi-axial experiments for reasons mentioned above.

Note that the switches were temporarily removed to allow the mounting brace to be secured to

the plate via bolts in the switch holes.

1when the mounting platform is perfectly perpendicular to the vertical telescopic direction of the drill chuck
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4.2. EXPERIMENTAL PROCEDURE

Figure 4.4: Images showing the OF sensor mounting brace used to prevent unwanted lateral
translation during application of multi-axial forces. The right-most image shows the application
of insulation tape used to prevent unwanted rotation of the OF sensor.

Three axis testing

Finally, full three axis tests were performed. As with the procedures followed in previous sets

of tests, data was first collected and analysed on a single point (the point closest to the centre

of the plate) and subsequently, across the entire grid of points on the plate. Initially, training

data was collected by applying gradual three-axis forces using a test rod (pictured in Figure

4.5 below) comprised of a metal rod and removable rubber foot (same as used in the drill press

tests).

Figure 4.5: Image showing the test rod used to generate gradual and more consistent 3-axis
force data

Figure 4.6 below depicts a profile of the force components applied to the plate using the testing

rod during experiments to gather training data. Notice the very gradually increasing and

decreasing force patterns - time axis is in seconds and most minimum to maximum transitions

occur over a matter of seconds where several thousand samples could be taken. The significance

of this is explored in Section 10.2.4.
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4.2. EXPERIMENTAL PROCEDURE

Figure 4.6: Graph showing a typical training data profile used in 3-axis experiments

Subjects were then requested to walk and run over the plate in a natural fashion to gather more

impulsive data. Subjects were requested to walk primarily along the y-axis but were instructed

to allow for random lateral (x) motion during push off to introduce all three component forces

into the data. Note that the OF sensor was still required to be secured in place by the mounting

brace in order to prevent translation (slipping) of this sensor during tests. As such, the switches

were left disconnected during the collection of training data in order to enable secure mounting

of the brace. The operation of the switches was tested and verified independently of this test.

Figure 4.7: Image captured during a walking test showing a subject about to step on the plate
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Chapter 5

Mechanical Design

The mechanical design of the force plate used in this project is largely a novel configuration

and was proposed to the author by Dr Amir Patel and Mr Callen Fisher who, amongst others,

applied for a patent on the mechanical design shortly prior to the time of writing of this report.

As alluded to in Section 1.3, a detailed analysis of the mechanical structure proposed and/or

an investigation into alternate mechanical designs do not form part of the scope of this project.

Rather, a brief analysis of the proposed design is explored and the rationale behind it clarified.

5.1 Proposed Conceptual Design

The motivation explained above led to a design that requires only four single-axis load cells as

the primary force sensors. The novel configuration proposed by Patel, Fisher et. al. is clarified

by the 3D render presented in Figure 5.1 below. The design consists of two square plates - a

base bottom plate and a smaller upper plate with centres vertically aligned. The plates are

coupled through four load cells mounted at predefined angles; allowing the load cells to respond

to components of forces applied to the top plate in all three axes. The geometric arrangement

of the four load cells is depicted in figures 5.11 and 5.6 below. A grid of 26 threaded holes was

tapped into the top plate in order to house a matrix of switches used to determine the position

of the COP during GRF interactions (the rationale for this is explored in subsequent sections).

Both the top and bottom plates, as well as the load cell mounts, were cut and/or machined from

6061-T4 heat-treated aluminium alloy with a yield stress of 240 MPa and a Young’s modulus

of 68.9 GPa [47]. This material was selected due to the fact that it is relatively inexpensive,

light-weight and robust.

1Credit is given to Alexander Blom of the UCT Mechatronics Lab for the SolidWorks models of the load cells
and angled mounts
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5.1. PROPOSED CONCEPTUAL DESIGN

Figure 5.1: Render of the mechanical design of the force plate proposed by Patel, Fisher et. al.
with modifications from the author.

Figure 5.2: Render of the top aluminium plate with the 26 push switches mounted as per the
co-ordinate scheme in Figure A.1

5.1.1 The Mechanical Challenge of the Design

The challenge presented by the aforementioned design is that, from a solid mechanics perspective,

it poses a difficult system to solve analytically due to the fact that each load cell is rigidly

connected (bolted) to the top and bottom plates through inclined mounts. Since the load cells

are only designed to measure in-axis compression and tension forces, it is difficult to discern the

effect of torque-inducing shear forces2 on the differential voltage produced by each gauge. As

such, it is extremely hard to derive component forces measured by the load cells directly and

instead, a data-driven numerical approach was adopted to tackle the problem.

2forces perpendicular to the primary longitudinal axis of the load cell in which compression and tension are
measured
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5.2. FEM SIMULATION

5.2 FEM Simulation

A series of FEM (finite element method) stress analysis tests were performed using SolidWorks

in order to verify the the mechanical design. As it was identified that the top plate was likely to

be the point of first mechanical failure, it was analysed in detail. In the simulation, all corners

of the top plate were fixed (as if mounted by bolts in their actual configuration) and a force was

applied at the centre of the plate. A small hole at the centre of the plate can be seen in figures

5.3 and 5.4 - this served as a work around to simulate a point force at the centre of the plate

since the software used only allowed for distributed forces to be created on a face (plane). This

small circle offered a new, sufficiently smaller plane to more closely simulate a point force.

Figure 5.3: Diagram showing the FOS (factor-of-safety) results of a FEM analysis with a 1000N
normal load and a 150N mediolateral load applied at the centre of the plate

As seen in the factor-of-safety (FOS) plot in Figure 5.3 above, 2.22 times the applied load

of 1000N in the normal axis and 150N in the mediolateral axis can be tolerated by the top

aluminium plate before yield stress is reached and deformation occurs. However, this is likely

a conservative estimate since the maximum simulated stress was located on the edge of the

temporary hole in the centre of the plate which does not actually exist in the design. Observing

the rest of the simulation result, an FOS of approximately 4.5 is more likely closer to the actual

rating and thus, it is safe to conclude that material failure is not of major concern for the

loading conditions expected for this system (both in human and animal testing applications).
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Figure 5.4: Diagram showing the material strain results of a FEM analysis with a 1000N normal
load and a 150N mediolateral load applied at the centre of the plate

5.3 Implementation of the Proposed Design

A picture of the constructed platform, as per the design shown in Figure 5.1, is shown in Figure

5.5 below. As shown in the render in Figure 5.2, secure mounting of the switches in the top

aluminium plate resulted in them protruding considerably above its top surface. A 3mm thick

neoprene rubber sheet was secured to the top aluminium plate so that upon foot contact with

the plate, the switches were only allowed just enough travel to successfully trigger, but not

enough to sustain any mechanical damage.

Figure 5.5: Image of the constructed force plate. Notice the carefully adjusted protrusion of
the switches.
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5.3. IMPLEMENTATION OF THE PROPOSED DESIGN

Figure 5.6: Image of the constructed system with top plate removed to show the load cell
geometry.

(a) Side view (b) Top view

Figure 5.7: Images of one of the four identical load cells mounted at 45°relative to the horizontal
plates.
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Chapter 6

Electronic Hardware Design

One of the most critical subsystems in this project is the data acquisition system. When

adopting a data-driven machine learning approach as in this project, there is a particularly

strong reliance on the quality of data acquired from all sensing elements. The concept of GIGO

(garbage in, garbage out) is particularly relevant here - one can only expect useless results

from a system that is provided useless input data. As such, this section explores the electronic

hardware aspects of the data acquisition system designed and used in this project. Development

begins with a conceptual overview of the system and its specifications and then progresses to

a comparison and justified selection of hardware components. Finally, the selected components

are explored more thoroughly and the design and development of PCBs is explored.

6.1 Conceptual Design and Component Selection

The data acquisition system to be used in this project had the following fundamental requirements:

• Capable of sampling load cells at up to 1kHz

• High fidelity and ultra low-noise

• Robust and tolerant to non-ideal power supplies

The first requirement of 1kHz sampling ability was guided by findings in the literature (Section

2.3.3) and was identified as a particularly important requirement of the system. It was realised

that in order to have the ability to log data at 1kHz for several seconds, several hundred kB

of memory would be required. Consequently, storing data directly in the RAM of a micro-

controller was no longer an option and the need for an SD card logging interface was identified.

Figure 6.1 below shows a broad overview of the envisaged data acquisition system:
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6.1. CONCEPTUAL DESIGN AND COMPONENT SELECTION

Figure 6.1: Diagram of the conceptual hardware overview of the data acquisition system

As shown above, the data inputs received by the micro-controller include readings from the

four load cells, data packets from the OptoForce sensor and digital signals from the 26 switches

mounted in the top plate. The micro-controller was responsible for receiving data from the

aforementioned sources, processing and packetising the received data and finally, logging packets

to the SD card. These constituent hardware components are explored separately below.

6.1.1 Load Cell Signal Processing

One of the most important components in the data acquisition system is the component

responsible for amplifying and sampling extremely small differential voltages from the load

cells. Each of the load cells used in this project were TAS501M miniature S-type load cells

made by HT Sensor Co. with a maximum capacity of 50kg and rated output of 1.5±0.5 mV/V.

Consequently, for an excitation voltage of 5V, these load cells would produce a theoretical1

maximum differential voltage of only Vd(max) = 7.5mV at the terminals of the full Wheatstone

bridge embedded within them.

Considering that such a small differential voltage range was available, noise introduced by the

surrounding environment, amplifiers and interfacing circuitry and importantly, transmission to

the micro-controller, became a very important consideration. It was recognised that external

sampling and digitising of the signals from the load cells posed a superior solution to reading

analogue load cell voltages directly into the micro-controller. This was decided for the following

reasons:

• Compared to analogue signals, digital signals are extremely noise-resistant as they encode

information in binary voltage levels

• Specialised ICs exist that are designed for ultra low noise amplification and sampling of

small scale differential voltages. Such ICs are explored below.

1this is an ideal maximum that neglects standard error and potentially, the inability to reach the full scale
excitation voltage
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• Four independent high-precision ADCs are required to truly be able to sample all four

load cells at the same instant. Most cheap micro-controllers do not have four internal

ADCs.

• The data acquisition system becomes decoupled from the specific micro-controller used if

external amplification and sampling is used and increases modularity and cross-compatibility

with different micro-controllers is possible

Component comparison

The HX711, made by AVIA Semiconductor, is an IC designed for weigh scale and industrial

process control applications and offers an integrated low-noise differential amplifier with programmable

gain, 24-bit sigma-delta ADC and a proprietary digital interface. It is extremely popular in

hobbyist applications and its use is documented extensively across the internet.

Another largely similar IC designed for the same purpose is the AD7730 made by Analog

Devices. It offers all the same internal functionality as the HX711 above with the addition of

two on-board digital filters, a more universal SPI output interface and a 6-bit DAC to offset

(tare) biased input voltages (among other minor additions). However, while supported by

extensive documentation by Analog Devices, the AD7730 is largely undocumented across the

internet and in hobbyist applications.

In an attempt to realise the most suitable option for this project, the comparison depicted in

Table 6.1 below was compiled with reference to the component datasheets in [49] and [50]:

Table 6.1: Table comparing the specifications of the AD7730 and HX711

AD7730 HX711

ADC resolution 24-bit 24-bit

Digital interface SPI Proprietary pulse-read mechanism

PGA options Continuous (0-255) Discrete (32, 64 or 128)

Offset DAC Yes No

Calibration
Full offset and gain calibration

options
None

Digital filtering Programmable digital filters Fixed dual 50/60Hz rejection filters

Maximum ODR 1.2kHz 80Hz

Output noise @ 80Hz

ODR
67nV 90nV

Input common mode

rejection
100dB 100dB

Cost $12.91 $9.95

The most glaring difference exposed by the comparison in Table 6.1 above is the maximum
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6.1. CONCEPTUAL DESIGN AND COMPONENT SELECTION

ODR (output data rate) supported by the two devices. The HX711 only allows for a maximum

ODR of 80Hz and this alone renders it unsuitable for this project. As a result, the AD7730 was

selected for use in this project and is explored further in Section 6.2.1 below.

6.1.2 Data logging

Two main options were identified to interface with the SD card for high speed logging of data:

the Sparkfun OpenLog SD card logger which operates via UART and a generic SPI SD card

breakout board. These devices are pictured in Figure 6.2 below.

(a) Sparkfun OpenLog micro SD card breakout [59] (b) Adafruit micro SD card SPI breakout [58]

Figure 6.2: Images of the micro SD card logging devices considered

While both devices are capable of sufficiently fast data transfer rates, the main distinguishing

feature between them is the complexity required to physically write serial data to the SD card.

In order to write data to the SD card using the Adafruit SPI device, a FAT32 file system

implementation is required. Although FATFS, an open source project that provides high level

implementations of the FAT file system , is available, it requires significantly more complexity

in the embedded software. Comparatively, the OpenLog device has a separate ATmega328

micro-controller pre-flashed with FAT32 firmware and as a result, data can simply be logged to

the SD card through UART communication. For this reason, the OpenLog was chosen for the

purpose of data logging.

6.1.3 Micro-controller

The micro-controller used in this project was the STM32F407VGT6 Discovery featuring a 32-

bit ARM Cortex M4 core with FPU, 1Mb flash memory and 192Kb RAM. Relevant to this

application, this micro-controller also has 3 SPI and 3 USART peripherals, as well as an on

board 32-bit hardware CRC unit (the significance of which is discussed in Chapter 7).

It was recognised that a high performance micro-controller capable of coordinating receiving,

computing and packetising and sending data packets in under 1ms (in order to achieve 1kHz

sampling) was required. As a candidate that more than meets the performance requirements,

STM32F4 Discovery was chosen for convenience (the fact that it is a development platform

and not just a stand alone MCU) but also due to the fact that it is one of the more widely
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documented micro-controllers with a vast array of resources available on the internet.

6.2 Detailed Design

Once the major components for the functions mentioned above were identified, a more detailed

design of the electronic hardware was conducted. Figure 6.3 below shows a refined version of the

overview diagram presented in Figure 6.3 in greater detail. The subsystems shown in Figure 6.3

- such as the AD7730 and shift register interface for the switch matrix - are explored separately

below.

Figure 6.3: Diagram showing a more detailed hardware block diagram of the electronics
comprising the data acquisition system. Note that while not depicted explicitly, the system
utilised four load cells and four corresponding AD7730 chips which operated identically.

6.2.1 AD7730 for Load Cell Interfacing

As mentioned in Section 6.1.1 above, the AD7730 is a highly specialised IC made by Analog

Devices and is designed for sensitive weigh scale and pressure measurement applications offering

an offset drift of less than 5nV/°C and a gain drift of less than 2ppm/°C. A functional block

diagram of the device is presented in Figure 6.4 below.

When using this device in DC-excited bridge applications, such as with Wheatstone bridges as

used in this system, a DC excitation voltage is applied to the bridge and is used as the analogue

reference voltage seen by the on-board ADC. The mV differential voltage produced by the

Wheatstone bridge in each load cell is buffered to prevent the effects of loading on the resistive

bridge and then amplified by an ultra-low noise 8-bit PGA which can be programmed to any

continuous gain between 1-256. The device leverages a 24-bit sigma-delta ADC which digitises

the PGA output with a peak-to-peak resolution of 1 in 230 000 counts [49], although this is the

quoted performance straight from the output of the device and noise in the transmission and

surrounding environment will lead to a decreased noise-free resolution. The device also features

an internal calibration micro-controller and is capable of performing self-calibration (without
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Figure 6.4: Diagram showing a functional block diagram of the AD7730 from [49] connected in
a typical DC-excited bridge application (as used in this project).

the need for an external differential input) and system calibration (using the zero- and full scale

external differential inputs).

On-chip digital filtering

A particularly notable feature of the AD7730 is its on-board digital filtering capability. The

digitised output signal from the ADC is fed into a digital sinc3 low-pass filter with programmable

ODR and bandwidth (as explored in Section 7.4 below). The sinc filter receives its name from

the fact that it is a sinc(ω) = sin (ω)
ω function in frequency and a rectangular pulse (ideal low-

pass filer) in the time domain. In the AD7730, the ADC samples the differential input from

the PGA at a considerably higher frequency than the prescribed/desired final ODR (and the

bandwidth of the input signal) and then, the sinc3 filter performs averaging on the over sampled

ADC signal by down-sampling to the rate specified by the prescribed ODR. As explained by

[51], sinc filters are used almost universally for this downsampling of sigma-delta ADCs due to

their simple implementation and near-optimal performance. The primary function of this is to

remove quantisation noise introduced by the ADC modulator that can be significant [49].

The second filtering stage is performed by a 22-tap low-pas FIR filter which processes the

downsampled output of the sinc3 filter. The combined frequency response is merely the product

of the filter responses of both filters.
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(a) Responses for ODR = 333Hz (b) Responses for ODR = 1kHz

Figure 6.5: Diagram of filter frequency responses (magnitude) for two different ODRs. The
sinc3, FIR and combined filter responses are shown.

As seen in Figure 6.5 above, the combined two-stage filter response is significantly influenced

by the programmed ODR of the device. It is evident from Figure 6.5(b) that high frequency

sampling at 1kHz is limited by considerably lower attenuation of line frequencies; the combined

frequency responses provides only -5dB and -7dB attenuation at 50 ± 1Hz and 60 ± 1Hz

respectively. However, as reflected by Figure 6.5(a), a lower ODR of 333Hz yields a combined

attenuation of -66dB and -71dB attenuation at 50 ± 1Hz and 60 ± 1Hz respectively. It should

be noted that the FIR filter in the AD7730 can also be bypassed completely in order to capture

additional high frequency components (although, significantly increased susceptibility to high

frequency noise would also need to be considered in such a case).

Circuit design

Once a greater understanding of the AD7730 was developed, a test circuit was devised to

begin testing of the micro-controller SPI interface library described in Section 7.4. Figure 6.6

below shows a schematic of the AD7730 interface circuit used to communicate with the micro-

controller. Note that in the implementation of the prototype board, AGND and DGND were

connected directly at several points (unlike in the PCB design explored below).
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Figure 6.6: Schematic of the AD7730 interface circuit

The key objectives of this circuit were to provide a means of exposing or ‘breaking out’ the

pins of the chip to allow for interfacing with the micro-controller. As per the AD7330 data

sheet [49], an independent 5MHz crystal oscillator was placed on the circuit for each chip to

allow the crystal to be placed as close to the external master clock pins of the AD7730 as

possible in an attempt to reduce noise. Apart from the regular SPI pins (SCLK, DIN, DOUT

and CS), it was decided that the SYNC, RESET and RDY pins should be available for a

hardware connection to the micro-controller, even though the functionality offered by these

pins can largely be implemented using software as discussed in Section 7.4. This was done in

case unforeseen difficulties were to arise in the software implementation but also in an attempt

to design a more universal interface board that could potentially be used by other applications

that might require physical hardware connections to these pins. It was also recognised that

SYNC pin of the AD7730 can be used to set its ADC and digital filters to a well-defined initial

state before conversions begin. This could prove useful in synchronising many AD7730 chips

in independent force plate systems in a single experiment. A prototype of this circuit was first

built on veroboard and is shown in Figure 6.7 below. Note: All white text labels besides the

power labels in the top right of the figure refer to the molex/IDC plug alongside the label.
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Figure 6.7: Image of the first veroboard prototype constructed to test the four load cells
interfaced by four identical versions of the circuit presented in Figure 6.6.

The prototype shown above was also designed, along with housing the four AD7730 chips and

plugs for four load cells, to provide connections for the OpenLog micro SD card logger and

OptoForce sensor via 4-pin molex plugs for two power lines and UART Tx and Rx lines (for

each device). The two plugs labelled SW matrix 1 and SW matrix 2 in Figure 6.7 were added

to connect the 7 pins of the switch matrix detailed below. The two IDC plugs labelled IDC plug

1 and IDC plug 2 were used to connect all necessary pins to the micro-controller via ribbon

cables.

Initially, the decoupling capacitors shown in the schematic in Figure 6.6 were omitted and for a

significant period of time, the circuit behaved extremely erratically and unpredictably. Not only

were the analogue readings measured the AD7730 chips noisy and inconsistent, but even digital

communication errors began to creep in. Eventually, this mistake was realised and decoupling

capacitors were incorporated according to the guidelines specified in the AD7730 datasheet [49]:

0.1µF and 10µF capacitors in parallel connected across the analogue supply lines (AVDD and

AGND) and a 0.1µF capacitor across the digtial supply pins (DVDD and DGND). Further

decoupling capacitors were also added across the power lines at each molex plug connecting the

load cells to the board (labelled ‘Gauge 1’ to ‘Gauge 4’ in Figure 6.7). The introduction of

proper decoupling improved the performance of the system dramatically and provided readings

with far less noise from the load cells.
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6.2.2 Switch Matrix

In order to determine the position of the applied force on the plate (position of the COP), a

matrix of 26 momentary switches was created. While the significance of being able to discern the

position of the COP in estimating GRFs is explored in subsequent sections, this section explores

the hardware designed to provide an interface between the switches and the micro-controller to

read and interpret each digital switch signal.

If each switch were to be read independently and directly by the micro-controller, 26 different

GPIO pins would be required. This is an extremely inefficient use of the micro-controller’s

available pins and instead, a system was designed to minimise the number of pins required. A

pair of complementary 8-bit shift registers were used - a 74HC595 serial in, parallel out (SIPO)

shift register and a 74HC165 parallel in, serial out (PISO) shift register. A matrix of rows and

columns was formed by the switches as shown in Figure 6.8 below. This approach allows a grid

of up to 8x8 (64) switches to be read using only 5 GPIO pins on the micro-controller.

The SIPO 74HC595 shift register is responsible for writing to the rows of the matrix and the

PISO 74HC165 is responsible for reading the state of the matrix columns that default to logic

low due to the presence of pull down resistors R1 to R5. A row is set high by sending a byte

to the serial input pin of the HC595 with the corresponding bit set and once the whole byte

has been shifted and latched into its output data register, the corresponding parallel output pin

(row) is set high. The logic level of the columns are latched into the input data register of the

HC165 when the SH/LD pin is pulled low momentarily and then returned high. The latched

byte is then shifted out after 8 rising edges of SCLK.

Figure 6.8: Schematic of the switch matrix interfacing circuit showing the 74HC595 and
74HC165 shift registers used to write to the rows and read from the columns of the matrix
respectively.
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In order to demonstrate the working principle of this circuit, consider row 1, (connected to QA

of 74HC595) and only row 1, set high. If any of the switches besides those in row 1 are pushed,

there will be no effect as all other rows are at logic low and closing any of these switches would

connect a row and column both at logic low. However, if switch 1 in Figure 6.8 (the switch

connecting the first column and first row) is pressed, the first column of the matrix will be

connected to row 1 at logic high and bit D7 (connected to column 1) of the 74HC165 will be

set high. More concisely phrased, this technique allows for the unambiguous deduction that if

row i is exclusively set high and column j is read high, switch Sij must be pressed2.

In the first revision of this circuit, the Schottky diodes were not included and it was noticed that

when pressing two buttons on the same column simultaneously, the byte read in by the micro-

controller would be incorrect (always zero). In order to demonstrate the need for Schottky

diodes D1 to D6, consider the scenario posed before with only row 1 set high and switch 1

pressed, connecting row 1 and column 1. Now consider the consequence of switch 6 being

pressed simultaneously ; column 1, now set high through row 1, would be directly connected

to row 2 at logic low. Without Schottky diode D2 present, there would be a short circuit

path between rows 1 and 2 (pins QA and QB of the 74HC595). D2 thus serves to prevent

current flowing back into pin QB (row 2) and shorting column 1 to ground. Schottky diodes

were specifically chosen to minimise the voltage drop from 74HC494 outputs to ensure that

the correct columns were still read as logic high where appropriate. While specific rows and

columns are referred to here, the principle generalises naturally.

Although only one row can be set high at a time, propagation delays of both shift registers are

in the order of ns (nanoseconds) and the SPI interface can be operated in the MHz region. This

has the effect of all switches being able to be read simultaneously.

Figure 6.9: Image showing the switch matrix prototype board constructed with reference to the
schematic in Figure 6.8.

2where switch Sij is located at the junction of the ith row and jth column of the matrix
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6.2.3 PCB Design

In designing a printed circuit board for the combined data acquisition system, it was decided

that four separate ‘break out’ boards would be developed for the AD7730 ICs, as well as an

independent ‘motherboard’ to connect the four AD7730 breakout boards, the OptoForce sensor,

OpenLog micro SD logger and the switch matrix to the micro-controller. This approach was

taken instead of designing one single board for to house all components for the following reasons:

• This approach offers greater modularity and if one component or subsection breaks or

is incorrectly designed, it can likely be fixed more easily.

• This approach is more universal; the AD7730 breakout boards were designed to not be

specific to the application used in this project and can thus be used in other applications.

AD7730 breakout boards

In order to achieve, or come as close as possible to achieving, the impressive performance quoted

in the AD7730 datasheet [49], the PCB design guidelines set out in [49] were followed carefully.

Extracted from [49] and adapted slightly, these requirements for the PCB housing the AD7730

are as follows:

1. Analogue and digital sections must be separate and confined to certain areas of the board

2. Separate digital and analogue ground planes must be used and must be only joined in one

place

3. Digital lines should not be run under the device to prevent noise coupling onto the die

4. The analogue ground plane should be allowed to run under the device to further avoid

noise coupling

5. Fast switching digital signals such as the SCLK line should be shielded by digital ground

to avoid radiating of noise to other sections of the board. Clock signals should never run

near analog inputs

6. Avoid cross-over of digital and analogue signals as far as possible

A 3D render of the AD7730 breakout board designed using KiCAD is presented in figures 6.10

and 6.11 below. The PCB was designed with reference to the schematic depicted in Figure 6.6.
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Figure 6.10: Annotated 3D render of the designed AD7730 breakout board with surface mount
and through-hole components displayed

Note that in the annotated diagram in Figure 6.10 above, the pins labelled ‘optional jumper

pins*’ can be connected by jumpers in order to pull active-low RESET and SYNC pins high

(effectively disabling them) when there is no desire to control these pins via software.

(a) Top view (b) Bottom view showing isolated analogue ground
(AGND) and digital ground (DGND) planes

Figure 6.11: 3D renders of the designed AD7730 breakout board with only surface mount
components displayed

The motherboard

As discussed above, a motherboard was designed in order to connect all constituent subsystems

of the data acquisition system to the micro-controller. Similar design principles as laid out in

the design of the AD7730 board were followed as far as possible. It was decided that due to

time constraints, pin sockets to house the STM32F4 Discovery board would be implemented

on this board rather than designing a custom board around the STM32F4 MCU itself. The

schematic for the motherboard from which the corresponding PCB was designed can be found

in Appendix E.1. 3D renders of the motherboard are shown in figures 6.12 and 6.13 below
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Figure 6.12: Annotated 3D render of the designed motherboard with surface mount and through-
hole components displayed. The 24-pin micro-controller socket has been omitted to provide a
better view.

Note that in the annotated diagram in Figure 6.12 above, labels with asterisks denote 3D render

objects that were either omitted in order to prevent obscuring the other components or were

not available in the KiCAD package. Furthermore, only one of the four IDC plugs is labelled

‘AD7730 comms connection’, however all four plugs serve this same purpose (for their respective

chip). The ‘independent AVDD select’ switch was incorporated to allow the analogue power

supply to the AD7730 chips to be independent (i.e 5V) or the same as the digital supply (3.3V)

to the chips.

(a) Top view (b) Bottom view

Figure 6.13: 3D renders of the designed AD7730 breakout board with surface mount components
displayed only
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Chapter 7

Software Design

This section details the design procedures followed in developing all embedded software systems

used in this project; primarily for the data acquisition system. The entire embedded code base

was developed in C using the open source Eclipse/GCC STM32 tool-chain with OpenOCD

debugging. ST’s HAL (Hardware Abstraction Layer) library was used instead of the older and

now unsupported Standard Peripheral Library for several reasons. The HAL library is the only

library officially supported and maintained by ST and is designed to work with the convenient

STM32CubeMX application. The HAL library was also developed with the ability to port code

between STM32 sub-families (F0, F1,...) as a priority.

7.1 The Challenge of High Speed Logging

One of the greatest challenges faced by the embedded software system in this project was to

achieve the objective of 1kHz sampling. This entailed co-ordinating all processes to receive,

validate, packetise and send data (these processes are hereinafter referred to as a ‘data cycle’)

in under 1ms. As the STM32F4 MCU used was clocked at a core frequency of 168MHz, time

taken for processing of data and numerical operations was not of major concern. The biggest

speed limitation was imposed by serial communication between the various peripheral devices

in the system. This included:

1. Receiving 16 bytes of data via UART from the OptoForce sensor

2. Receiving 3 bytes of data via SPI from the 24-bit data register of each of the four AD7730

ICs

3. Exchanging 10 bytes of data via SPI from the switch matrix

4. Transmitting 35 bytes of packaged data to the OpenLog SD logger via UART

Of these tasks, the fourth one (transmitting to the OpenLog) required the most significant
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amount of time (in the order of 500µs) to complete. However, this was only achieved after several

performance adjustments were made as described below. The meticulous design procedure

followed to ensure that all communication tasks could be completed within 1ms is documented

below.

7.1.1 Memory Management and the DMA

Traditionally, instructions on the micro-controller are executed sequentially by the CPU as the

program counter is incremented. Therefore, the implication of this synchronous operation is

that if transmission of x bytes to a peripheral is initiated by the CPU, the CPU is tied up

(occupied) for a given number of clock cycles until the transfer of x bytes is complete.

Figure 7.1: High level diagram depicting the CPU’s involvement in a synchronous transfer of
data between a variable in SRAM and the data register of a UART peripheral

This inefficiency can be circumvented to an extent through asynchronous operation offered by

interrupts since peripherals can be programmed to generate an interrupt on several different

events. For example, when receiving data via UART, the UART peripheral in use can be

programmed to generate an interrupt with the RXNE (Rx data register not empty) flag set

once the specified number of bytes is received [52]. Consequently, the CPU is free to perform

other tasks until this interrupt is triggered and at such a time, can read the received bytes from

the particular UART’s data register. However, this approach still has the limitation that data

must be moved between RAM and the peripheral registers by the CPU and interrupts need to

be managed explicitly by the CPU.

The most efficient solution to this problem can be achieved through the use of the DMA

(direct memory access) unit in the STM32F4. The DMA controller is a dedicated hardware unit

(independent of the CPU) that allows peripherals in the MCU to access internal memories (RAM

and flash) without intervention from the CPU core [52]. Apart from the small once-off overhead

required to configure the DMA for transfers, the DMA controller operates independently of the

CPU and can almost be considered as a memory co-processor. As a result, the CPU core is

entirely free of the overhead created by data transfer as alluded to above [52].
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Figure 7.2: Diagram showing the DMA architecture in the STM32F4 MCU from [52]. The
DMA controller is configured by the CPU via the AHB slave port interface.

The bus architecture of the STM32F4 MCU in Figure C.1 (Appendix C.1), shows how APB

peripherals (such as the UART and SPI peripherals) can assert a DMA request to the DMA

controller of either DMA 1 or DMA 2 which can then transfer data to/from that peripheral

independently of the CPU core. Figure 7.2 above clarifies the DMA architecture in the STM32F4

MCU. It shows how groups of 8 DMA request channels are multiplexed to 8 independent streams

dedicated to managing memory access requests from peripherals [52]. However, only one request

channel per stream can be active at a given time and the DMA arbiter is responsible for

managing priority of DMA requests [52]. This prevents contention between several peripherals

requesting memory transfers using the DMA. Optional FIFO buffers can be enabled between

peripherals and memory locations although if left disabled by default (as in this project), the

configured peripheral and memory addresses become directly coupled during data transfer.

7.1.2 High Speed Logging with OpenLog

Initially, a baud rate of 115200 bps was used in transmitting data to the OpenLog logger as

this was the maximum recommended rate documented on the SparkFun1 OpenLog tutorial

page. However, it was soon realised that transmitting 35 bytes at 115200 bps would require

t = # bits
bits/s = 35×8

115200 = 2.43 ms. In fact, this was experimentally shown on an oscilloscope

1SparkFun is the manufacturer of the OpenLog device
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to be closer to 2.7ms (presumably due to the inclusion of start and stop bits in the UART

transmission). Clearly, this was unacceptable as the full transfer of data to the SD card was

required to take significantly less than 1ms in order to achieve 1kHz sampling2. Upon more

thorough inspection of the OpenLog datasheet, it was noticed that baud rates of up to 2Mbps

were physically supported by the MCU on board the OpenLog device (Atmel ATmega328p).

However, the challenge remained to find a baud rate significantly higher than 115200 bps that

could be matched exactly to that of the UART peripheral being used on the STM32F4.

In order to gain insight into their internal baud rate generation structures, the datasheets of

the ATmega328p [53] and STM32F407 [54] were consulted. According to [53], the equation for

calculating the UART baud rate is given by:

baud =
fosc

8(UBRRN+ 1)
where UBRRN =

fosc
8× baud∗

− 1 (7.1)

where baud∗ is the desired (theoretical) baud rate and baud (without ∗) is the actual baud rate

used by the MCU. Because UBBRN must be an integer, these may not always be equal - if

the combination of baud∗ and fosc supplied yield a float (decimal), the decimal points will be

truncated to produce a rounded down integer. This has the implication that for fosc=16MHz

(as with the OpenLog device), a finite number of baud rates are available: 2Mbps, 1Mbps,

666.67bps, 500000bps... for UBBRN = 0, 1, 2, 3... respectively. It was decided that a baud rate

of 500 000bps was most suitable as it satisfied the speed requirements for the length of data to

be transmitted but was not excessively high so as to increase the risk of transmission errors.

For the STM32F407, a greater resolution of exact baud rates is possible. According to [54], the

equation used to calculate the UART baud rate for this MCU are is shown below. It should

be noted that in order to gain the greatest resolution of possible baud rates, the STM32F4 was

clocked at its maximum core frequency of 168MHz, resulting in the APB2 bus connected to

USART2 (used for the OpenLog device) being clocked at its maximum of 42MHz.

baud =
fck

8(2−OVER8)×USARTDIV
(7.2)

where OVER8 is a logical variable that is 0 when UART oversampling by 16 is used as in this

system. USARTDIV is an unsigned fixed point number coded to the USART BRR register [54].

It is composed of an 8-bit mantissa and 4-bit fractional component. To achieve a baud rate

of 500 000bps for this MCU, USARTDIV = 42e6
8×2×500e3 = 5.25. This results in a mantissa of 5

and fractional component of 0.25 = 4
16 . The resulting value coded to the USART baud rate

register was thus USART BRR = 0x054. This allowed the baud rate of exactly 500 000 bps to

be achieved by both MCUs and resulted in extremely consistent logging performance.

2sampling here refers to the whole process of gathering data, packetising and logging - a full data cycle
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7.2 Data Packetisation

It was realised that optimising the process of logging to the SD card for speed was more

important than having a more readable log format such as when logging with ASCII characters

and delimiters. As such, raw bytes were logged to the SD card using a predefined packetisation

scheme with a data packet structure as depicted in Figure 7.3 below. A tilde (hex 0x7E, decimal

126) was used as the start and stop character (byte).

Figure 7.3: Diagram showing packet structure used to transmit data to the micro SD card
via UART. The top row shows byte positions and the bottom row, the data assigned to the
corresponding bytes.

The descriptions of the data assigned to the various bits in Figure 7.3 are clarified below:

• gauge i: the three data bytes from the 24-bit data register of the ith AD7730/load cell

combination

• Fx, Fy, Fz: the three 16-bit GRF component forces captured by the OptoForce sensor

• pos x, y: one byte for the x co-ordinate of the detected COP position and byte for the

y co-ordinate

• reading #: the reading number recorded by the OF sensor used as a reference

• err flag: error flag byte used to indicate the presence of sampling errors that can be

handled during data post-processing3

• zero: zero byte used for padding to make the data packet length word (32-bit) divisible

(explained in Section 7.3.1 below)

• CRC: 32-bit CRC word used for verifying data transmission integrity during post-processing

Using a tilde as the start and stop (terminal) character led to a limitation: if another byte

within the data packet (bytes 1 to 23 in Figure 7.3) had the decimal value 126, the data

decoding program would incorrectly interpret it as an early stop character. Furthermore

simply interpreting the stop character as a fixed length of bytes after the start character

proved ineffective in practice as occasionally (albeit very rarely), a byte was dropped during

transmission and ruined the sequence. The solution implemented was to predictably change

any non-terminal 0x7E bytes to a sequence of two known substitute bytes which could then be

recognised and restored during decoding of the logged data.

3decoding and post-processing of logged data in MATLAB
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7.3 Data Integrity Measures

7.3.1 Cyclic Redundancy Check (CRC)

CRC codes are error-detecting mechanisms that are commonly used to verify the integrity of

transmitted data. CRCs are significantly more robust and effective that checksums and parity

bits (which are essentially 1-bit CRCs) and are ideal for the application in this project as they

are particularly effective4 at detecting errors caused by noise along transmission channels and

are simple to implement in binary hardware [56]. A particular generator polynomial is required

in the system-specific CRC calculation which becomes the divisor in a polynomial long division

operation [56]. The input data forms the dividend, the quotient is discarded and the remainder

is the CRC code result.

In order to verify that no corruption occurred during transmission of packetised data to the

micro SD card, the following process was followed: for each data packet, a 32-bit CRC code

was first calculated by the hardware CRC unit of the STM32F4 - an impressive 60 times faster

than the same algorithm implemented in software with level 3 optimisation [55]. As shown

in Figure 7.3, the CRC code was appended to the packet before transmission (note the start

and stop bytes did not form part of the data used to calculate the CRC code). However, since

the hardware CRC unit in the STM32F4 only operates on 32-bit word arrays, a zero byte was

appended to each data packet (as seen in Figure 7.3) in order to ensure that the data packet

was word-aligned5. The algorithm used by the CRC hardware unit in the STM32F4 is clarified

by the flowchart in Figure 7.4 below. This flowchart was used to develop a MATLAB code

implementation that was used to recalculate a CRC code based on the received data. This was

then compared with the MCU-calculated CRC in the received data packet to verify the integrity

of the received data. Further details of the MATLAB decoding process are discussed in Section

8.1.1.

4In fact, the STM32 CRC implementation is used in flash content integrity self-test checks in ST firmware [55]
5i.e. able to be split into an array of 32-bit words
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Figure 7.4: Flowchart extracted from [55] representing the CRC calculation algortithm used by
the STM32Fxx MCU series

Note that the initial CRC and generator polynomial (Initial Crc and POLY respectively in

Figure 7.4) are fixed in the STM32F4. Their values are 0xFFFF FFFFF and 0x4C11DB7 (the

CRC-32 Ethernet polynomial) respectively.

7.3.2 OptoForce Packet Checking

The packet structure used by the OptoForce sensor is depicted in Figure 7.5 below. As the 3 axis

GRF components measured by the OptoForce sensor were used as the truth data (targets) for

the machine learning models in this project, it was of paramount importance that the integrity

of this received data could be verified. To this end and with reference to Figure 7.5, the following

checks were implemented on each 16 byte data packet received from the OF sensor:

• The four header bytes were checked to match the constant pattern of (170,0,50,3) as in

every valid packet

• It was verified that the error bytes were both zero indicating no data conversion or other

internal sensor errors occurred

• The checksum was checked to match the sum of the rest of the data bytes in the packet

While still logged, any invalid packets (that failed any of the above checks) were flagged by

setting the OptoForce error bit in the error flag byte as per Figure 7.3.
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Figure 7.5: Diagram to clarify the structure of the 16 byte packets transmitted by the OptoForce
sensor

7.4 AD7730 SPI Interface Library

As mentioned in Section 6.2.1, very little information pertaining to interfacing with the AD7730

(besides the technical data presented in the datasheet) was available across the internet and in

other resources. As a result, a comprehensive AD7730 SPI library6 written in C was developed

for interfacing with the STM32F4 MCU. This section will explore some of the principles followed

the design of this implementation.

7.4.1 Register Structure and Read/Write Procedure

Vital to the understanding of the operation of the AD7730 is the on-chip register structure

depicted in Figure 7.6 below. With the exception of continuous read operations as described

below, all transactions with on-chip registers must begin with a write to the communications

register. This initial write command specifies both whether the next operation is a write/read

command, and the target register for the subsequent operation [49]. A subsequent command

is sent to either read or write to the previously specified target register (such as a write to the

filter register to configure the chip’s filter settings) and following this, the chip returns to an

idle state (where it began) where it expects another write to its communication register.

As shown in Figure C.2, two predefined bits (RW1 and RW0) are used to selected the type of

read/write operation and three other bits (RS0 to RS2) are used to select the target register.

The particular bit patterns corresponding to these bits are also presented in Figure C.2. Note

that all these bits form part of the communications register. Flowcharts extracted from [49]

that clearly explain the procedure required for reading from and writing to the AD7730 (in all

modes) are presented in Appendix C.2.

6available at: https://github.com/JamesTev/AD7730
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Figure 7.6: Diagram from [49] showing the on-chip register structure. Note that the
communications register directly controls (provides input to) the register select decoder.

Continuous read mode

In continuous read mode, the process of interacting with the AD7730 is slightly different.

Once programmed to start continuous read, the three bytes of the 24-bit data register of the

chip can be read without any intermediate commands to the communications register as was

previously required above. The RDY pin goes low once a conversion is complete and thus can

be monitored via hardware (GPIO pin on the MCU) to determine when the data register can

be read. The RDY pin returns high once the data register has been read. Once appropriately

configured, the AD7730 chips were used in continuous read mode in this project in order to

reduce communication overhead and facilitate operating at an ODR of 1kHz.

Filter configuration and ODR control

The three bytes comprising the filter register on board the AD7330 not only control the filter

characteristics and operation, but also directly control the ODR. This is because the amount of

averaging (effectively the extent of down-sampling) performed by the sinc3 filter in the AD7730

influences the final ODR. As documented in Figure C.2, 12 bits (SF0 to SF11) control the ODR

according to the following formula7 [49]:

ODR =
fCLK(in)

16
× 1

SF
(7.3)

7this assumes input chopping is disabled which is required in order to reach an ODR of 1kHz
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where SF is decimal equivalent of the data provided in the SF bits of the Filter Register and

fCLK(in) is the master clock frequency (of the external crystal) [49]. In order to achieve an

ODR of 1kHZ, the SF bits were set to SF = 312 (decimal) to yield a theoretical ODR of 1001

Hz8.

SPI multi-slave structure

Figure 7.7 below clarifies the structure used to communicate with the four AD7730 chips

independently on common SPI lines. In order to communicate with the ith chip, only the

ith SS (slave select) line was pulled low and the rest were kept high.

Figure 7.7: Diagram showing the master (STM32F4 MCU) and multi-slave SPI structure used
to communicated with the four AD7730 chips independently with common SPI lines.

7.5 Switch Matrix

7.5.1 Serial Interface

In order to interact with the switch matrix shift register hardware as discussed in Section 6.2.2,

an SPI interfacing scheme was developed. In order to read switch presses unambiguously from

the matrix, only one row was set high (enabled) at any given time. In order to enable row i,

a byte with only the ith bit set was transmitted to the matrix (specifically to the serial-in line

of the 74HC595 SIPO shift register) via SPI. A byte representing the logic state of the matrix

columns was then received (shifted out) from the matrix via the 74HC165 PISO shift register.

By observing this received byte, it could be deduced which switches in row i were pressed due to

8The AD7730 datasheet [49] recommends using a 4.9125MHz crystal in which case an ODR of exactly 1kHz is
attainable. However, such a crystal was not readily available and a 5MHz crystal was also listed as acceptable
in [49].
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the direct correspondence of set bits in this byte and switch positions for the ith row. Although

not all switches could strictly be read from simultaneously, reading from the matrix with 5

rows required a (bidirectional) transfer of only 10 bytes (and in general, 2n bytes for n rows9).

Because SPI1 in the STM32F4 was configured to run at over 4MHz, several thousand checks of

the full matrix could be performed per second.

7.5.2 Positional Interpolation

Due to the fact that a discrete grid of 26 switches was used to capture the COP position from

a continuous xy plane, a means of detecting positions in between discrete grid points needed

to be devised. In order to achieve this, the centroid - as defined by Equation 7.4 below - of all

point co-ordinates (xi, yi) corresponding to N triggered switches was computed and used as the

interpolated position.

(xc, yc) =
1

N
(

N∑

i=1

xi,
N∑

i=1

yi) (7.4)

where (xc, yc) is the co-ordinate of the geometric centroid of a set of N points in an xy plane.

7.6 Combined Embedded System

The flowchart in Figure 7.8 below clarifies the data acquisition process. Importantly, the process

blocks with dotted green borders represent asynchronous tasks handled by the DMA. Since the

SPI communication with the AD7730 chips and the switch matrix could be run at over 4MHz,

it was decided to simply use the CPU to manage these processes. Furthermore, if both the SPI

transfers and the UART transfer from the OF sensor were delegated to the DMA, the CPU

would be left completely unoccupied but would have no other tasks to execute anyway until

all data was received from these peripherals. Although the CPU would physically be free to

resume sequential execution once the data from the switches was received, the data would not

be able to be fully processed and packetised until the full 16 bytes of data from the OF sensor

(handled by the DMA) were received.

9with a maximum of 8 rows and 8 columns
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Figure 7.8: Flowchart of the data acquisition process co-ordinated by the STM32F4 MCU.
The Process data block is expanded alongside. The SysTick IRQ Handler is a parallelogram to
represent an independent asynchronous event.

7.6.1 Significance of Leveraging the DMA for Data Logging

Another important point to note is that upon completion of packetisation of data, only a

transfer request needed to be sent to the DMA and after doing so, the CPU could return to

polling the sample flag for the next data cycle. This is subtlety is important; the only processes

in the flowchart that needed to necessarily complete in under 1ms (hereinafter referred to as the

critical data cycle) were those indicated by the large bracket in Figure 7.8. If this was achieved,

the UART transfer to the SD card managed by the DMA had at least 1ms to complete since the

transfer could be executed in parallel to the CPU and once initiated, only needed to complete
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before a new transfer was initiated at the end of the following critical data cycle. If the DMA

was not used for this purpose, the CPU would be required to handle the transfer and would

only have 1ms less the duration of the critical data cycle to do so. From experiments performed

using the oscilloscope, the length of the data cycle was typically in the region of 700µs - leaving

only 300µs for transmission of a full data packet to the SD card (if the CPU were to be used).
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Chapter 8

Machine Learning Implementation

A core component of this project was the use of machine learning (ML) techniques to learn

non-linear force relationships presented by the mechanical design of the system. This learning

process was performed carefully and systematically through the training of various ML models in

a variety of tests described below. This brief chapter discusses data post-processing techniques

used and outlines the software implementations of some of the machine learning models detailed

in the Theory Development in Chapter 3.

Figure 8.1 below outlines the basic input-output structure used in machine learning regression

models in this project; Gi for i ∈ [1 : 4] represents the force reading input from gauge1 i and

inputs x and y encode the co-ordinates of the COP detected by the switch matrix. Fx, Fy and

Fz are the output2 GRF component variables.

Figure 8.1: Diagram to show the input-output structure of various regression models used in
this project

1gauge i, as loosely referred to commonly in this report, actually refers to load cell i
2the output parameters represent the actual responses from the OF sensor during training and estimated responses
during testing
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8.1 Software Implementation

MATLAB was used almost exclusively for the implementation of machine learning models in this

project since it offers a stand-alone3 platform, excellent built-in functionality for quick testing

and convenient data-visualisation tools. It is also extremely well optimised for processing large

volumes of data.

8.1.1 Decoding of Log Data in MATLAB

On every power cycle of the OpenLog device, a new text file was created with an incremental

file name such as ”LOG001.TXT”, ”LOG002.TXT” etc. The challenge remained to read in and

interpret the raw data in each text file log byte-by-byte. MATLAB was used for this purpose

- specifically, the MATLAB fread with uint8 argument was used to read in individual bytes.

The same algorithm used in Section 7.2 for dealing with non-terminal tilde (0x7E) characters was

used in reverse to restore each data packet to its original form (as created on the MCU, before

transmission). Finally, for each packet, the CRC code was calculated and compared with the

CRC code received in the data packet. If these did not match or any bits in the error flag byte (as

explained in Section 7.2) were set, the whole packet was flagged and excluded from the final array

of processed data packets. Because this occurred so rarely, it was deemed the most acceptable

option to merely discard erroneous packets. Finally, with knowledge of the packet structure

outlined in Figure 7.3, the array of processed data packets was read into variables in MATLAB

using suitable typecasting and saved into .mat files for fast and convenient processing at a later

stage. The extraction script (analyse data V2.m) used to process raw log data can be found

at: https://github.com/JamesTev/Force_Plate/tree/master/MATLAB%20Code/FP_Utils.

8.1.2 Data Normalisation

It was noticed that while all load cell readings had a fixed and consistent zero point which was

measured when no force was applied, this point varied across the readings by a constant offset

(termed the ‘zero level’). Because the zero point was particularly consistent in each data set,

no force was applied for approximately the first second of logging. This allowed at least 500

zero points to be captured and the fixed zero level of each sensor to be determined. This offset

was then subtracted (or added for negative offsets) from the data of each load cell to produce

consistent, zero-mean readings. Finally, the signed 24-bit ADC-converted load cell readings

were normalised to a percentage of the full scale reading by dividing by (223 − 1) = 8388607

(maximum signed 24-bit number in decimal). Figure 8.2 below shows a sample of normalised

data. It should be noted that the zero level was independent of the magnitude of each gauge

reading - these readings are unequal due to a random force applied at a non-central position on

the plate.

3no need for installation of external libraries or environments
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Figure 8.2: Diagram to show adjusted zero-mean load cell (’gauge’) readings for an arbitrary
force profile. The legend applies to all sub-figures.

8.1.3 Linear and SVM Regression

Linear regression, as described in Section 3.1.1, was implemented using MATLAB’s fitrlinear

function. This function accepted a [n × p] training input matrix X train (n observations and p

features or regressors) and a [n×1] target vector Y train. Unfortunately, only uni-variate (single

output) linear regression models were available in the version of MATLAB used (R2016b). As

such, the structure shown in Figure 8.1 had to be adapted to instead train three separate linear

models, each with one of the 3D GRF vectors as the output variable. However, each model was

presented the same input data - only the outputs were decoupled.

Epsilon-insensitive SVM regression, as described in Section 3.1.1, was implemented using MATLAB’s

fitrsvm function. The type of SVM kernel used was simply altered using the 'KernelFunction'

parameter. In this project, only linear and Gaussian kernels were experimented with as the

polynomial kernel model often required inordinate training time in comparison. As with the

linear model, only uni-variate (single output) SVM models were available in the version of

MATLAB used. The same strategy of three independent, output-decoupled models as used

above was implemented.
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8.1.4 Feed-forward Neural Network

MATLAB’s Neural Network Toolbox was largely used for creating and training of neural nets in

this project. This toolbox offers a powerful implementation of a single-hidden-layer feed-forward

network with a flexible architecture; the number of input and output neurons are determined by

the dimensions of the input and output data matrices respectively and the number of neurons

in the hidden layer can be controlled directly. The network, by default, uses a non-linear

(sigmoidal) activation function between hidden and output layers and a linear function on

the output layer (as recommended in the Theory Development in Section 3.1). Furthermore,

the training algorithm used in tuning the network parameters can be selected from three

algorithms, namely: the Levenberg-Marquadt, Bayesian regularisation and Scaled Conjugate

Descent algorithms. Except for any explicit mentions to the contrary in specific experiments

in this project, the default training algorithm used was the Levenberg-Marquadt algorithm due

to its fast training time and consistently robust performance (as determined experimentally).

Networks trained with Bayesian Regularisation yielded almost indistinguishable results in each

experiment.

Data division

During training of neural networks using this tool box on a particular data set, data (including

network inputs and output targets) was randomly divided using dividerand into 3 subsets of

predefined proportions:

• Training: data presented to the network during training - used to adjust the network

parameters based on evaluation of the cost function and other parameters. 70% of the

whole data set was typically allocated to training.

• Validation: data samples used to measure the network generalisation and to stop training

when generalisation stopped improving. During validation, out-of-sample (unseen) data

would be presented to the network and the subsequent estimation performance would

yield validation performance (and thus, an indicator of generalisation). 15% of the whole

data was typically allocated to validation.

• Testing: data samples used to independently4 evaluate network performance during and

after training. 15% of the whole data was typically allocated to testing.

Network parameters

One of the difficult parameters to optimise in a neural network is the number of neurons in the

hidden layer. As discussed in Section 3.2.5, a network with a larger number of hidden neurons

4testing with this subset has no effect on training
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has increased predictive power but consequently, is more susceptible to over-fitting training data

(and poor out-of-sample performance) if sufficient regularisation is not implemented. Thus,

the challenge remained to determine an optimal number of hidden neurons to achieve the

best balance between predictive power and generalisation to out-of-sample data. Due to the

unknown, non-linear relationships represented by the network, this parameter was one that had

to be optimised empirically. Although this could not be done as efficiently as with the ELM

described below, performance of networks with varying numbers of hidden neurons (typically

between 5 and 20) was evaluated for each experiment. The default number of hidden neurons

used in experiments (unless otherwise specified) was 10. While the learning rate (as referred to in

Section 3.2.4) was adaptively adjusted with the Levenberg-Marquardt algorithm, the MATLAB

NN Toolbox did not allow for modification of the cost function to introduce λ-penalisation for

direct control of generalisation (as outlined in Section 3.2.5).

8.1.5 ELM

Due to the relative ease of implementing a basic ELM in MATLAB, as well as the fact that

MATLAB does not offer a built-in ELM model, a code implementation using singular value

decomposition and basic linear algebra techniques was developed. The basic idea behind this

implementation for n hidden neurons is shown in the listing below:

1 Xa = [ones(length(X), 1) X]; %append column of ones to input matrix

2 R = 2*randn(size(X, 2)+1, n); %uniformly distributed random numbers in [−1;1]
3 H = tanh(Xa*R); %create design matrix with hyperbolic tangent activation fn.

4 [U, S, V] = svd(Xa, 'econ'); %orthogonal matrices from singular value ...

decomposition

5 P inv = V*inv(S+lambda*eye(length(S))*U'); %compute pseudo−inverse with ...

regularisation

6 w = P inv*Y;

7

8 Qa = [ones(length(Q), 1) Q]; %augmented query matrix

9 Y pred = Qa*w; %predicted targets (testing)

The matrices X and Y contain the training data inputs and targets respectively. Matrix Q

represents a matrix of out-of-sample test inputs and Y pred is the corresponding matrix of

predicted test outputs. As explained in Section 3.3, the ridge factor, referred to as lambda

above, is responsible for regularisation and is also determined empirically. However, as discussed

in Section 3.3, for each re-evaluation of generalisation performance with a different values for

lambda, only matrix multiplication is required (no matrix inversions) and a wide range of

lambda values can be tested extremely quickly and efficiently, even for networks with in excess

of 200 hidden neurons. Algorithms to perform efficient numerical optimisation of the ridge

factor λ and the number of hidden neurons in the ELM models developed are presented in the

project code listing available at: https://github.com/JamesTev/Force_Plate/tree/master/

MATLAB%20Code.
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8.1.6 Other Implementations

Apart from the MATLAB regression models mentioned above, many different implementations

exist on various platforms. Keras is a particularly popular open source neural network library

written in Python. It serves as a high-level API that runs on top of powerful machine learning

frameworks such as Google’s TensorFlow and Theano and allows for greater flexibility in

designing the architecture of the neural network. Experimentation with a SFLN neural network

with varying numbers of hidden neurons was performed using Keras and a TensorFlow backend.

As with MATLAB models, a MSE cost function was used. However, various tests conducted

with a range of different network parameters yielded almost identical results to comparable

MATLAB models. The Keras model implemented in Python is available at: https://github.

com/JamesTev/Force_Plate/tree/master/Keras%20Model.
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Chapter 9

Results

This section presents the results obtained from simulations and practical experiments conducted.

Note that in most graphs shown in this section, axis labels Fx, Fy and Fz represent the

component forces in the x (mediolateral), y (anterior-posterior) and z (vertical) axes respectively.

Furthermore, error metrics are often presented as a percentage of the full scale for (%FS) which,

as used in the calculations of this system, is 300N for the two lateral axes and 2000N for the

vertical axis. RMS error, as used extensively in this section, is defined by Equation 9.1 below:

RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)2 (9.1)

where N is the number of observations in the data set and yi and ŷi are the actual and estimated

responses respectively for observation i. Note that unless explicitly stated otherwise, all results

shown below show model performance on completely unseen data. Additionally, all co-ordinates

are referenced from the plate co-ordinate scheme established in Figure A.1.

9.1 Preliminary Signal Tests

As mentioned in Section 8.1.2, load cell readings from the AD7730 chips showed extremely

consistent zero levels with remarkably low noise. Figure 9.1 shows 1000 sampled zero readings

(measured when no force was applied to the plate) with no software filtering or post-processing

besides normalising each ‘gauge’ (load cell) reading as described in Section 8.1.2.
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Figure 9.1: Diagram showing 1000 zero readings from the four load cells sampled at 1kHz. This
data was captured using the prototype board shown in Figure 6.7. Notice the extremely small
y-axis scale.

9.2 Single Axis GRF Estimation

As described in Section 4.2.2, training data was first obtained for the application of an exclusively

vertical (z-axis) force. Figure 9.2 below compares the raw data obtained from the four load

cells against the z-axis force (hereinafter referred to as Fz) measured by the OptoForce sensor

for two different COP positions on the plate.

Figure 9.2: Graphs showing raw load cell data vs the actual Fz at a COP position of (0;2). The
y-axis shows %FS of the full scale vertical force.
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The difference in relative magnitudes of the four gauges in Figure 9.2 above is expected as the

load was applied closer to load cells 1 and 2 at point (0;2) in this experiment. Furthermore, the

gains of the load cell amplifiers (on board the AD7730 chips) were initially set to an arbitrary

value (albeit the same value across the four amplifiers) in this experiment and thus the the

magnitudes of the load cell (‘gauge’) readings relative to the OptoForce Fz measurement are

not relevant.

9.2.1 Static Load Testing

Once it was established that the data acquisition system was providing reliable data, the simplest

conceivable test of the regression models was the task of estimating a static vertical force

induced by a fixed mass. This test was also used to serve as an indicator of the precision1

of the measurement system (both the OptoForce sensor and the regression models). A neural

network2 with 8 hidden neurons and a linear regression model are compared in this simple test.

Figure 9.3: Graph showing the performance of two different models in estimating the force
induced by a 6kg fixed mass.

9.2.2 Dynamic Loading

Following the static test performed above, an arbitrary dynamic force was applied using the

drill press apparatus described in Section 4.2.2. Figure 9.4 below shows the estimated force

response of various regression models at an arbitrary point (-2;-2). Table 9.1 below shows the

1the degree of similarity or repeatability between successive readings that ought to be identical
2unless otherwise specified, this refers to a net created with the MATLAB Neural Network toolbox with the
default architecture discussed in Section 8.1.4
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RMSE, standard deviation of absolute3 prediction error and maximum (instantaneous) absolute

prediction errors for the three regression models in the experiment.

Figure 9.4: Graph showing the performance of three different models in estimating an arbitrary
dynamic force in the z-axis applied at (-2; -2)

Table 9.1: Table displaying RMS error (RMSE), standard deviation of absolute error and
maximum absolute error for each regression model presented in Figure 9.4

RMSE SD of Abs. Error Max Abs. Error

[N] % FS [N] % FS [N] %FS

Linear 11.157 0.560 15.892 0.795 42.920 2.146

NN 9.533 0.477 13.576 0.679 35.264 1.763

ELM 10.578 0.529 14.765 0.738 36.209 1.810

9.2.3 Positional Testing

Once the platform’s ability to reliably estimate vertical forces applied at the centre of the plate

was established, an experiment was conducted to determine whether vertical forces could be

estimated with similar accuracy at any of the 26 designated points on the plate. As explained in

Section 4.2.2, data was thus collected at each of the 26 switch positions depicted in Figure A.1.

In Table A.1, the results for testing on unseen data on each of the 26 points are documented.

3calculated on the magnitude of errors between predicted and actual outputs
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The RMS error, standard deviation of absolute error and maximum absolute error are presented

both in units of newtons and more importantly, as a percentage of the full scale vertical force

of 2000N. Figure 9.5 shows a visual representation of the results obtained on unseen test data

at position (-1;-3) - one of the extreme points in the grid.

Figure 9.5: Test at extreme position (-1; -3)

Figure 9.6 below shows a heat map of the RMS errors from a neural network as a percentage

of the full scale force (%FS) over the 26 testing points on the plate. Note that the (x; y) co-

ordinates shown in Figure 9.6 correspond directly to the already established plate co-ordinate

scheme detailed in Figure 9.5. Heat maps showing data for ELM and linear regression errors

are presented in figures A.2 and A.3 respectively.
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Figure 9.6: Heat map over the 26 switch positions showing the RMS errors of estimated vertical
GRF by a neural network predictor. Errors are given as a percentage of the full scale vertical
force of 2000N.

Positional interpolation

As described in sections 7.5.2 and 6.2.2, a discrete grid of 26 switches was used to capture xy

position of the COP of the applied GRF. Figures 9.7 and 9.8 below show estimated responses

to a random vertical force profile at two interpolated points: (-1.5; 0.5) and (-0.5; 0.5). These

points are both examples of a position that required interpolation in both the x and y directions

and were chosen in order to test interpolation near the edge and centre of the plate. Input

interpolation entailed using the interpolated4 (x; y) co-ordinate as the input to the network.

Output interpolation was achieved by presenting the same load cell data to the network four

times but each time, using the four different known5 (x; y) co-ordinates of the grid points

surrounding the interpolated point. The network outputs from these four known points were

then averaged to give the output-interpolated result. Further interpolation testing results are

presented in Section 9.4.1.

4i.e. a position that had not directly been exposed to the network during training
5co-ordinates that had been exposed to the network during training
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Figure 9.7: Graph showing network estimated vs actual vertical GRF Fz at interpolated
position (-0.5; 0.5). Although hardly distinguishable, results from both interpolation strategies
as discussed above are shown.

Figure 9.8: Graph showing network estimated vs actual vertical GRF Fz at interpolated position
(-1.5; 0.5). Results from both interpolation strategies as discussed above are shown.
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9.2.4 Geometric symmetry

Due to the symmetry of the plate about two sets of orthogonal axes (x-y axes and the y = x

and y = −x lines), tests were conducted to determine if this symmetry could be exploited to

generate artificial data points. This notion is clarified by the example in Figure 9.9 below.

(a) Initial test point A (b) Points A’ reflected about the y axis and A”
reflected about the x axis

Figure 9.9: Diagrams showing the process of creating artificial test points using geometric
symmetry of the plate. Notice the reflected points A’ and A” and corresponding reflected load
cell positions Gi’ and Gi”

Figure 9.10 below shows the estimated force responses with unadjusted inputs (at the original

point A in Figure 9.9).

Figure 9.10: Graph showing estimated force responses with unadjusted input data at point A

Figures 9.11 and 9.12 below shows the estimated force responses with gauge positions rearranged
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as depicted in Figure 9.9 to simulate data collected at reflected points A’ and A”. Notice that

the estimators are largely unable to closely predict the actual Fz force on artificially created

points with gauges rearranged.

Figure 9.11: Graph showing estimated force responses at artificially created point A’ (A reflected
in y-axis)

Figure 9.12: Graph showing estimated force responses at artificially created point A” (A
reflected in x-axis)

9.3 Two Axis GRF Estimation

The following sub-section details the results of two axis (Fz and Fx) tests performed with the

apparatus and procedure described in Section 4.2.2. It was decided that the same rigorous

testing procedure performed in the single axis (Fz) tests would not be applied for testing 2-axis

performance. Instead, further rigorous testing was first conducted for full 3-axis tests as this

was deemed a more challenging task in general.
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However, in order to maintain a systematic testing approach, the following experiments and

their results are presented below. Figure 9.13 below shows the the estimated vertical and

mediolateral (Fz and Fx respectively) forces applied near the centre at position (1;1) on the

plate:

Figure 9.13: Graph showing estimated 2-axis force responses for an arbitrary dynamic load
applied at position (1;1) on the plate.

9.3.1 Effect of Training Data on Predictor Performance

It was noticed that the nature of the training data presented to the various regression models had

a significant effect of the prediction performance. Predicting the lateral x-axis force (Fx) always

proved more challenging than the vertical component and was thus analysed independently

for the following training tests. Figures 9.14 and 9.15 show the training data (and the force

estimated using the training data) presented to a network. However, the two testing sets used

on this network differ; Figure 9.14 shows the network’s poor performance in estimating a large

magnitude testing set and Figure 9.15 shows accurate prediction of a smaller magnitude testing

set.
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Figure 9.14: Graph showing poor Fx estimation for a testing set with values that exceeded
several training set values in magnitude.

Figure 9.15: Graph showing accurate Fx estimation for a testing set with force magnitudes that
were fully contained (smaller than) in the training set.
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9.4 Three Axis GRF Estimation

The following sub-section details the results of full 3-axis tests performed with the apparatus

and procedures described in Section 4.2.2, as well as some auxiliary tests. Figure 9.13 below

shows the the estimated 3-axis GRF components for a multi-axial load applied near the plate

centre at position (1;1) on the plate. Initial 3-axis data for both training and testing was

collected using the testing rod with rubber foot as shown in Figure 4.5.

9.4.1 Positional Testing

As discussed in Section 9.2.3 and following similar structure to the test results presented in the

single axis tests (Section 4.2.2) above, a 3-axis force dataset was acquired for each of the 26

switch positions on the plate. The same error metrics discussed in Section 4.2.2 are displayed

for each of the three GRF components (Fx, Fy and Fz) in tables A.4 to A.5 in Appendix A.

Heat maps corresponding to these results are shown for the NN model are also shown in A.

Figure 9.16 below shows the estimated 3-axis GRF performance for position (0;1) - a point close

to the origin (geometric centre) of the plate. As with each of these 26 positional tests, a linear

regression model, ELM and neural network are compared by their prediction performance. Note

the significantly improved performance of the ELM and NN models in comparison to the linear

regression model.

Figure 9.16: Graph showing estimated 3-axis GRF components against their true counterparts
for an arbitrary dynamic load applied by the testing rod at position (0;1) on the plate.
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Figure 9.16 below shows the results of the test which produced the poorest performance in

estimating the 3-axis GRF components. This test was at position (3;-2) - an extreme point near

the edge of the plate.

Figure 9.17: Graph showing estimated 3-axis GRF components against their true counterparts
for an arbitrary dynamic load applied by the testing rod at extreme position (3;-2) on the plate.
The legend seen in the top figure is consistent for Fy and Fz plots.

Positional interpolation

As described in Section 9.2.3 for single-axis interpolation testing, the platform’s ability to

estimate GRFs at interpolated points (in between the designated switch positions) was tested.

For 3-axis versions of these tests, estimator performance at interpolated points was initially

significantly poorer than that at designated switch positions (Figure 9.18(a) and 9.19(a)).

However, it was noticed that the underlying pattern of the estimated GRF component force

in each axis correlated very closely to its respective target force profile. By multiplying the

estimated component force vectors by fixed scalar amount which was determined empirically,

the improved estimation results results shown in 9.18(b) were obtained. Figure 9.19(a) and

(b) follow the same structure but for a load applied at (1.5; 0.5). As with the single-axis

experiments, input and output interpolation strategies yielded almost identical results and thus,

due to its simpler implementation, the input interpolation strategy was applied here (i.e. the

interpolated (x, y) co-ordinates were used directly as inputs to the regression models). Note

that these interpolated positions did not form part of the training data and the models were
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never exposed to any data at these in-between positions.

(a) Force responses without adjustment (b) Points A’ reflected about the y axis and A”
reflected about the x axis

Figure 9.18: Graphs showing the estimated GRF performance at interpolated point (0.5; 0.5)
before and after linear adjustment

(a) Force responses without adjustment (b) Linearly adjusted force responses

Figure 9.19: Graphs showing the estimated GRF performance at interpolated point (1.5; 0.5)
before and after linear adjustment

9.4.2 Magnitude Testing

In order to ascertain whether larger forces (in the order of magnitude experienced by cheetahs

mentioned in [22]) could still be estimated as accurately as in previous tests, larger magnitude

training/testing data was first acquired. Typical results of a large-scale loading test performed
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are presented in Figure 9.20 below.

Figure 9.20: Graph showing estimated 3-axis GRF components for large-scale magnitude testing

9.4.3 Natural Gait Experiments

An important experiment was the plate’s ability to estimate GRFs associated with natural

human gait. As described in Section 4.2.2, a subject weighing approximately 50kg was requested

to first step on the plate during natural walking and thereafter, during a short run.

Walking tests

Figure 9.21 shows the estimated GRF components of a neural network on data obtained during

several steps on the plate during walking.
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Figure 9.21: Graph showing network-estimated 3-axis GRF components and their actual
counterparts obtained during natural walking

Table 9.2: Table quantifying the neural network prediction errors for data shown in Figure 9.21

Error Metric [%FS]

RMSE SD Max Error

Fx 1.7141 4.1663 17.883

Fy 1.5447 3.6711 13.352

Fz 0.57534 1.1589 4.2733

Note that the standard deviation (SD) and max error metrics in Table 9.2 were computed on

absolute errors (so as to prevent cancellation of positive and negative errors).
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Figure 9.22: A closer look at the force profiles depicted in Figure 9.21 above

Note the similarity in the Fz and Fy GRF components (Figure 9.22 above) measured experimentally

and the human gait force profiles recorded in the Parkinson’s Disease study conducted in [9]

(repeated in Figure 9.23 below for the reader’s convenience). Note that compressive vertical

forces were defined as negative in this project (opposite to the convention in [9] and thus Figure

9.23).

Figure 9.23: Graphs from [9] to show typical force-time curves for vertical (Fz) and anterior-
posterior (Fy) GRF components for experiments conducted in this study.
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The profiles depicted in Figure 9.24 show further similarity to the experimental results shown

in Figure 9.22. Note also the presence of the mediolateral component in Figure 9.24 (which

was not recorded in Figure 9.23) which also shows a similar profile to that in the result of this

experiment.

Figure 9.24: Graphs from [11] to show typical GRF profiles of human gait measured by novel
nanocomposite piezo-responsive foam (NCPF) sensors. Results from several tests are shown by
the grey curves and for a randomly selected test, the true GRF profile is represented by the
solid blank lines and the estimated profile by the dotted red lines.

Figure 9.25 shows the predictor performance of an ELM and linear regressor for the same task

and input data as in Figure 9.21 above.

Figure 9.25: Graph showing 3-axis GRF components estimated by a linear regressor and ELM
obtained during natural walking.

97



9.4. THREE AXIS GRF ESTIMATION

Table 9.3: Tables quantifying the ELM and linear regressor prediction errors for the data shown
in Figure 9.25 above

Table 9.4: ELM prediction errors

Error Metric [%FS]

RMSE SD Max Error

Fx 2.2868 5.2635 20.386

Fy 1.6504 3.7422 16.386

Fz 0.33523 0.7154 3.0411

Table 9.5: Linear regressor prediction errors

Error Metric [%FS]

RMSE SD Max Error

Fx 3.1819 6.5034 22.329

Fy 2.4446 5.0787 17.047

Fz 0.60488 1.2306 3.9259

Running tests

After data for natural walking patterns on the plate was collected, the same 50kg subject as in

the previous section was requested to step on the plate during a short run. The performance of

estimated GRFs by a neural network is depicted in Figure 9.26. Figure 9.27 shows a closer look

at GRF components estimated by a linear regression and an ELM model on a different data set

acquired during tests with the same subject.

Figure 9.26: Graph showing 3-axis GRF components estimated by a neural network for
impulsive forces applied through stepping on the plate during a light run
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Error Metric [%FS]

RMSE SD Max Error

Fx 2.123 4.508 13.641

Fy 1.517 3.166 10.038

Fz 0.36 0.695 2.304

Table 9.6: Table quantifying the neural network prediction errors for data shown in the running
experiment in Figure 9.26

Figure 9.27: Graph showing a more detailed view of 3-axis GRF components estimated by a
linear regression and ELM model for impulsive forces applied through stepping on the plate
during a light run
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Chapter 10

Discussion

10.1 Performance of the Data Acquisition (DAQ) System

A critical aspect of this system was the data acquisition system and the integrity of the data

acquired from it - particularly the data from the four AD7730 devices coupled to the load cells.

Without consistent and reliable data, even the most sophisticate machine learning models would

have been rendered useless. Figure 9.1 provides an indication of the quality of the data received

from the AD7730 devices. The extremely low level of noise in zero readings presented in this

figure was observed to be consistent across the entire operating range of the load cells. This

likely allowed less data and simpler machine learning models to perform well due to the fact

that data presented to the models did not require filtering through learning of extensive volumes

of data for the same input behaviour.

Unfortunately, the PCBs designed in Section 6.2.3 were not manufactured and returned for

experimentation before the end of this project (despite the design and fabrication files being

submitted to the manufacturer, TraX, more than a month prior to the end date of this project).

Consequently, the performance of the DAQ system using the PCBs in place of the prototype

board depicted in Figure 6.7 could not be analysed.

10.1.1 Verification of Acquired Data

Although the DAQ system seemed to perform extremely well from initial samples, it needed to

be ascertained whether the sampled data was meaningful or not. From Figure 9.2 which plots

the raw load cell readings against the actual vertical force measured by the OptoForce (OF)

sensor, it was seen that the unprocessed load cell data acquired from the DAQ system correlated

extremely closely to the ‘truth’ data from the OF sensor. Subtle patterns in the measured force

were captured by the DAQ system over large ranges of the input space and furthermore, the

force profiles show excellent synchronisation in time (even though the load cell readings and OF
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data were sampled and retrieved from two independent sensor systems).

10.1.2 Precision and Consistency

The results of the static loading test depicted in Figure 9.3 provide an indication of the precision

and consistency of the DAQ system. A vertical force induced by a fixed 6kg mass was accurately

estimated in successive placements of the mass on the plate. Small spikes and oscillations in

the data acquired from the OF sensor can be attributed to the fact that the mass was placed

somewhat inconsistently by hand during experiments. Furthermore, the small vertical force

induced by a 6kg mass could be estimated extremely accurately even though this system was

designed for loads in the region of 30kg - 100kg (for applications with humans and animals such

as the cheetah).

10.2 Performance of Regression Models

In this section, the results presented in Chapter 9 characterising the performance of the various

regression models are analysed. Model performance was most commonly numerically characterised

by observing the RMS error (RMSE), standard deviation of the absolute error and maximum

absolute error. It should be noted that RMSE formed the most commonly observed metric

in the literature [23, 24, 26, 41, 40] for evaluating regression model performance and greatest

attention should be paid to it. The standard deviation of absolute error is provided to give

an indication of the spread of the error about the (absolute) mean value. While the maximum

error is also indicated in each error set, this metric should be considered with caution as even

one outlier or erroneous sample (typically out of several thousand) in the estimated (or target)

force profiles would skew the error figures with a disproportionately large maximum error.

10.2.1 Static vs Dynamic Performance

As shown with single-axis (vertical) loading results in Section 9.2, the various regression models

were able to estimate dynamic1 forces equally well as - and often better than - static loads. It

is believed that this phenomenon is due to the fact that machine learning models were provided

with no indication of the temporal link between samples. This is because, when presented a data

set of x discrete samples, the samples were randomly divided and shuffled into training, testing

and validation sets. For every sample, each model would simply try use the instantaneous load

cell and position inputs to match2 them to the target force component outputs at that instant.

Hence, whether successive readings (of inputs and corresponding outputs) were constant or

rapidly changing was of no consequence to the models. In fact, static or gradually-changing

1characterised by a constantly changing force gradient
2by evaluating the cost function to assess prediction performance and consequently adjusting relevant internal
model parameters
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force profiles were often estimated less successfully than their dynamic counterparts since in

static profiles, a particular value (or values within a very small subset of the domain) would

often need to be estimated over many successive samples. If the models did not receive sufficient

exposure to this particular value (or small subset) during training, they would likely fail to

estimate the corresponding outputs as accurately and would accumulate significant offset error

over many readings as a result. Due to their rapidly changing behaviour, this issue was less

prevalent with dynamic loads. This is encouraging as force profiles in almost all foreseeable

applications of this platform would likely be dynamic and impulsive in nature (as documented

in [2, 3, 5]).

10.2.2 Analysis of Positional Tests

An important practical requirement of this system is that it should be able to estimate forces

applied at any point on the plate. As shown in the results of single axis and three axis positional

tests in Section 9.2.3 and 9.4.1 respectively, the plate was able to estimate GRFs remarkably

well at each of the 26 switch positions across the plate.

Of course, tests with data recorded on certain positions yielded better results than others but

interestingly, there was no clear relationship between the prediction error and the distance of

the COP of the applied load from the centre of the plate. Heat maps such as those presented

in Figure 9.6 and Section A.3 showed a positional distribution of errors that is almost random

- RMS prediction errors are not minimal at the centre of the plate and the errors do not

increase predictably towards the edge of the plate. This may be due to the fact that there were

slight differences in magnitudes of load cell readings, even when a vertical load was applied at

the centre of the plate. The random error distribution suggests that the decreased errors at

certain points were likely a consequence of a more representative or effective training data set

recorded at that position. This result is potentially encouraging as it does not suggest that the

performance of this design is limited to the centre of the plate.

10.2.3 Force Magnitude and Model Performance

There was no indication from the experiments performed that an increase in the applied force

on the plate led to poorer or better model performance in estimating GRFs. Figure 9.20

shows that the system was able to accurately estimate forces up to approximately 150N in the

lateral axes and 600N in the vertical axis. With the exception of the vertical component, these

forces are in line with the maximum expected GRFs experienced by the cheetah in the study

documented in [22]. Furthermore, the only reason larger forces were not tested was that the

available testing apparatus made it difficult to acquire a sufficient set of reliable 3-axis readings

of larger magnitudes. Given the evidence of consistent performance from experiments over a

wide range of forces, it is believed that the maximum forces that can be estimated by the system

are only mechanically limited by the sensing elements used (in particular, the load cells) and
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not the machine learning or electronics systems.

10.2.4 Training Data Strategies

The results of the two-axis training data experiments documented in Section 9.3 provide insight

into a particularly important concept discovered during experimentation. When a model was

trained using training data with a maximum magnitude of Fmax, it was largely unable to

estimate forces that exceeded Fmax in unseen testing data (as seen in Figure 9.14). However,

as shown in Figure 9.15, a model trained on the same data set was able to estimate unseen

forces that did not exceed Fmax almost perfectly. This is likely due to the fact that the system

dynamics were non-linear across the full input-output range (domain) and even if a model was

given an opportunity to learn the system dynamics over one part of the force domain (such

as for training data containing forces between 0 and 30% of the full scale range), it would not

necessarily be able to extrapolate to other parts of the domain (such as the 40% to 50% range).

It was also discovered that training the models on gradual, non-impulsive data (like in the

force profile depicted in Figure 4.6) yielded models capable of significantly better prediction

performance on unseen data. The reason for this fairly obvious; given more instances of a

particular training point (with associated input and output force data), a model will better learn

the input-output mapping for that point (and likely for dynamics within the neighbourhood of

that point). It was deduced that ideally, training data should expose the models to a near-

uniform distribution of the expected input-output loading range.

10.2.5 Positional Interpolation Capability

As discussed in Chapter 9, experiments were conducted to determine whether the platform

could accurately estimate GRFs applied at ’interpolated’ points in between designated switch

positions. This is an important capability as a human foot (or possibly even a cheetah foot)

would likely depress/trigger several switches when stepping on the plate. Although, in such

a case, the resulting COP of the distributed load may well coincide with a designated switch

position, it certainly would not always be the case. As a result, the worst case position3 in the

centre of a square of switches was tested near the edge and centre of the plate. Figures 9.7

and 9.8 show that for purely vertical loads, GRFs at interpolated positions could be estimated

with a degree of accuracy comparable to the those applied at designated switch positions (i.e.

positions which were exposed directly to models during training).

For 3-axis interpolation tests, Section 9.4.1 showed initially poor estimator performance at

interpolated points but outlined how estimator outputs could be linearly adjusted to achieve

comparable performance as at designated switch positions. Importantly, these linear adjustments

(offsets) were consistent for several loading tests at a given interpolated position and thus, given

3the position furthest from a designated switch position which would require the largest interpolation from the
regression models
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testing data at several interpolated positions, the corresponding linear adjustments could be

determined empirically and stored in look-up table.

This, however, is not the ideal solution and several other options of overcoming this problem

exist. It was noticed that if training data was recorded for forces applied at an interpolated

point and then used in model training, the models would be able to estimate new forces (in

unseen test data) at that interpolated point equally as well as with forces applied at designated

switch positions. Clearly, the implication is that training data should be taken at more positions

on the plate. Although, ideally, a continuous xy sensing mechanism should be implemented to

determine the COP of the applied GRF, even the existing discrete 26-switch grid would be more

effective with training data recorded with finer positional resolution.

10.2.6 Analysis of Symmetry Testing

The results of tests conducted in Section 9.2.4 showed that synthesising an ‘artificial data set’

by reflecting the data point co-ordinates and appropriately rearranging the order of the load

cell inputs presented to the models (as shown in Figure 9.9) was ineffective. This is likely due

to differences in the load cells and particularly, in the way they were mounted - the load cells

were secured to their respective mounts with nuts and bolts that were inconsistently tightened.

Furthermore, although the PGA in each of the AD7730 chips was set to the same gain, the

relative magnitudes of readings between the four load cells was never quite consistent - even

for a theoretically even vertical force applied at the centre of the plate. It is unclear whether

this was due to a slight issue with the data acquisition system or the actual load cell sensing

elements.

10.2.7 Analysis of Natural Gait Results

In Section 9.4.3, it was shown that the plate was able to accurately estimate all three GRF

components experienced during natural gait of a human subject. The predicted and actual

force profiles depicted in figures 9.21 and 9.22 show an exceptionally close match. Furthermore,

these results show prediction errors in line with the three axis positional tests conducted

with significantly more gradual forces and more data. This shows that the system is able

to competently estimate impulsive, sharp forces (to be expected in the study of animal motion

and human sports science applications alike). It also supports the theory that the rate of change

of successive data samples makes no difference to the regression models as even with significantly

less training data for walking tests, the models were able to accurately estimate highly impulsive

forces with rapid (large) changes between successive samples.

The specific profile of the the vertical (Fz) and anterior-posterior (Fy) GRF components shown

in Figure 9.22 is particularly worth noting. Figure 9.23 below it shows the corresponding human

gait Fz and Fy force profiles recorded during experiments conducted in [9]. These curves show
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an exceptionally close resemblance to the corresponding profiles recorded by the system in this

project when subjects were requested to walk on the plate. Even the more pronounced take-off

spike (labelled Fy2 in Figure 9.23) compared to the heel strike (Fy1) seen in Figure 9.23 is

consistent with the Fy curve shown in Figure 9.22 in this project. This correlation between

experimental results and those documented in the literature was observed again in Figure 9.24

extracted from [11]. This profile obtained from a novel piezo-based sensor further validates the

observations above and shows similarity to the experimental result in the mediolateral GRF

component.

The mediolateral (Fx) components present in the force profile in Figure 9.22 can be explained

by the fact that the subject was requested to walk primarily in the direction of the plate’s y-axis

but was instructed to allow for lateral motion (in the x direction) when pushing off the plate to

introduce mediolateral Fx components into the data. This was done to test the system under

the most challenging scenario where all three GRF components were present as this would likely

be the case in practical applications with an animal or human without the constraint of having

to walk or run along a single lateral axis. The Fx components seen in Figure 9.22 increase

sharply towards the end of the stride and are consistent with the instruction to allow lateral

(x-axis) deviation in the push-off motion.

10.2.8 Choice of Machine Learning Models

The default neural network (NN) as discussed in Chapter 8 was most commonly used as this

architecture was determined to be the most robust and performed best across different tests.

This decision was guided by the MIT study in [26] where a neural network with 10 hidden

neurons proved to be most successful across various tests [26]. The effect of adding more hidden

neurons was also investigated and as seen in Figure 10.1 below, networks with more than 10

hidden neurons did not necessarily perform better on unseen test data. In fact, the y-axis

RMSE and max error (on unseen test data) can be seen increasing steadily with number of

hidden neurons.

Furthermore, due to time constraints, it became unfeasible to train and retest several models

with varying parameters due to the number of experiments performed. It was also decided that

the performance achieved was more than adequate for a proof-of-concept model of this system

and time was thus prioritised for testing more features and capabilities of the plate.
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Figure 10.1: Figure from [26] depicting the effect of increasing hidden neurons in a neural
network regression model. The blue curves show network performance on training data and the
red curves show performance on testing data for 10 trials.

However, as alluded to in the theory development behind the ELM in Section 3.3, the ridge

factor λ could be tuned very quickly to determine the optimal value for generalisation of ELM

models across data sets. A numerically-optimised ridge factor that was most commonly chosen

due to a good balance of generalisation and predictive power was λ = 10e-3. Comparing

the prediction performances of various models presented in Chapter 9, it is evident that the

ELM model developed from scratch performed comparably to the MATLAB neural network

model and occasionally better too. Furthermore, the time taken to train ELM models was, in

every case, several orders of magnitude less than a comparable neural network trained with the

Levenberg-Marquardt backpropagation algorithm (which, itself, was considerably faster than

the Bayesian Regularisation algorithm).

While the performance of the basic linear regression model was often significantly poorer than

the NN and ELM models, it was included in each test as an indicator of the complexity of the

task. In single-axis tests, the linear regressor was able to achieve almost identical performance

to the other models but in the more challenging tasks, such as in the 3-axis gait experiments,

it was notably inferior to the other models.

Although briefly discussed in Section 3.1.2, the SVM regression was not used extensively in this

project. This is because the SVM regressor with a linear kernel gave almost identical results

to the linear regression model in each test and the Gaussian kernel SVM regressor, although

occasionally produced particularly impressive results, was very inconsistent and often produced

oscillatory responses that would obscure the other results. Additionally, all SVM models took

considerably longer than any other type of model to train (often up to 5 times as long).
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10.3 Limitations of the System and Experimental Procedures

A limitation of the discrete switch matrix used to determine the COP of the applied force would

arise when trying to determine the COP of non-uniform pressure/force distributions at multiple

points on the plate as might be the case during contact with a flat human foot. As the switches

are only able to produce a digital signal with no indication of force, one can only assume that

the COP of a distributed load lies at the centroid of the n switches pressed during contact with

the body applying the force. However, the COP may not actually coincide with the geometric

centroid of the active switch positions if the applied force distribution is non-uniform.

It should be noted that, referring to Figure 9.21, not all steps recorded showed a profile as

clear as the plots in Figure 9.22. This can likely be attributed to the fact that, as discussed in

Section 4.2.2, the OF sensor was required to be placed on top of the plate and the subject was

requested to step on the OF sensor during their stride in order to gather target force data most

accurately. Due to the limited surface area of the OF sensor, the subject was not always able

to step on the sensor with a full roll of the foot during landing and take off.

Furthermore, the performance of this system is measured, in all cases, with the OF sensor as

a reference which is assumed to be accurate. Although, practically, this sensor has its own

internal error which is likely not negligible, the regression models are not influenced by this

and they would perform equally well if the truth data was infinitely accurate (their task is just

to track a known reference - regardless of whether that reference is actually correct or not).

This, however, has the tacit limitation that the accuracy of a system developed using machine

learning techniques is only as good as the reference sensor or ‘source of truth’ used to train it.

10.4 Cost Analysis

Figure 10.2: Table showing the approximate cost breakdown of the force platform and data
acquisition system.
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As seen in Table 10.2 above, this entire prototype system can be implemented for approximately

R6100.45. The actual price of the machined aluminium mounts is unknown as these parts were

machined by the UCT Mechanical Engineering Workshop for free in this project. Based on

opinions from people in the UCT Mechatronics Lab with experience in this area, the cost of

the material and machining was estimated to be R400 per mount at an external company.

Furthermore, the price of the load cells was converted from a base price of $20 (USD) assuming

a R14/$ exchange rate.

This prototype is approximately 50 times cheaper than the AMTI BP400600-1000 industrial

force plate documented in Section 2.5.3. Furthermore, the BP400600-1000 weights 32kg and the

platform developed in this system only weights approximately 8kg making it significantly more

portable. Although, unlike the BP400600-1000, this system is not yet capable of estimating

3-axis moments, the majority of studies [9, 10, 2, 1, 8] documented in Section 2 only utilised

3-axis forces in their experiments (and often, only two of the force components).
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Chapter 11

Conclusions and Future Work

Over the course of this project, a low-cost force platform capable of accurately estimating 3-axis

GRFs was developed. This project has successfully addressed the research questions posed in

Section 1.4:

1. A low noise, high fidelity data acquisition system capable of sampling 1kHz can be

developed using relatively low-cost components

2. It is possible to accurately estimate 3-axis GRFs with only four single-axis load cells using

machine learning and the mechanical design outlined in Section 5.1. This can be achieved

for a few thousand rands (just over R6000).

3. It is foreseeable that this force plate system, with refinement and further testing, could

present a viable low-cost alternative to high end industrial versions used in the commercial

and academic study of humans and animals

As can be seen by the results in Chapter 9 that were discussed in Chapter 10, the use of

machine learning techniques presented a highly effective means of interpreting the non-linear

relationship created by the novel mechanical structure proposed in Section 5.1. Impressively,

the optimum performance of this novel system in estimating 3-axis GRFs showed smaller RMS

and maximum errors (for all three component axes) than the MIT study documented in Section

2.4.2 for comparable tests.

Results in Section 9.4.3 showed that the system developed was capable of estimating both fixed

loads and highly impulsive 3-axis force profiles induced during natural human gait (both for

walking and light running). The results obtained during these experiments were validated by

findings in [9] and [11].

The electronic hardware and embedded software aspects comprising data acquisition system

developed for sampling at 1kHz proved extremely effective and consistent once operational. It

is believed that the fidelity and resolution of data acquired from it will only improve with the
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use of the PCBs designed in Section 6.2.3. Data integrity techniques implemented, as discussed

in Section 7.3.1, proved invaluable in detecting communication errors and preventing erroneous

data reaching the machine learning models.

To date, no low-cost1 force platforms capable of accurately estimating 3-axis GRFs exist. The

platform developed in this project presents an extremely promising and exciting low cost proof-

of-concept model that, with further refinement and testing, could soon pose a feasible alternative

to commercial force plates used in industry (such as the BP400600 and equivalent models).

11.1 Recommendations for Future Work

While the system performed remarkably well in fulfilling the objectives of this project, there

are many opportunities for refinement of the system and experimental procedure followed given

more time. Recommendations for future work are presented below.

Augmented models and improved parameter selection

It could prove useful to conduct a more detailed analysis of the mechanical constraints and

relationships in the system to determine whether even a basic model capturing some of the

system dynamics can be developed. This could be used in model-based machine learning

techniques which would offer more transparency in their functionality (unlike with a neural

network which encodes relationships in its thousands of weights and biases) and would be less

dependent on large volumes of training data.

Methods such as k-fold cross validation should be investigated to optimise model parameters

for generalisation across data sets. Furthermore, considering the negligible time taken to train

the ELM models used in this project, an ensemble of ELMs could be implemented to produce

an estimated output as the majority vote of a strategically chosen subset of independent ELM

models. This would exploit the diversity introduced by the inherent randomness in the ELM’s

hidden weights.

Investigating continuous xy sensing and training mechanisms

A continuous xy sensing mechanism to determine the COP of the applied load should be

investigated. Proprietary mechanisms for achieving this through capacitive or resistive sensing

elements would be ideal. However, existing products such as the SparkFun SoftPot membrane

potentiometer are thin strips that change resistance linearly along their length when subjected

to a force. These may provide a means of achieving a near-continuous sensing method if many

1in the region of a few thousand rands
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strips are placed across the plate. Capacitive films (similar to those used in touch screens)

should also be investigated.

Figure 11.1: Image of the SparkFun SoftPot membrane potentiometer [57]

A training mechanism that could provide consistent, linearly increasing loads across a continuous

xy grid would be ideal and would expose models to loads across the whole plate, instead of at

26 discrete positions as in this project. This was achieved by using a CNC machine in the

MIT study in [26]. This would also allow more force to be applied steadily over a wider range

and would allow the true minimum and maximum force estimation limits of the system to be

ascertained.

Optimising the mechanical design

It would be useful to investigate the effect of modifying the machined load cell mounts to secure

them at angles other than 45°. For example, mounting at a more oblique angle may allow for

greater sensing resolution in the lateral axes.

Cost considerations

Theoretically, the STM32F0 MCU variants (Cortex-M0 core) could fulfil the same purpose as

the STM32F4 used in this project since the STM32F051C6, for example, meets the hardware

peripheral requirements of 1 DMA, 2 SPI and 2 UART peripherals and as listed by supplier Digi-

Key, only costs R40 compared to R188. However, this MCU cost is not of great concern since the

major cost of this system as shown in Table 10.2 arose from the machining of the 8 aluminium

load cell mounts. A cheaper material capable of withstanding the expected mechanical loads

should be investigated in future work. Particularly one that lends itself to moulding or cheaper

manufacturing methods.

Extended training and testing

Given the data-driven nature of the system, it would benefit greatly from more training data.

Human gait experiments should be explored more extensively in future work with subjects of

varying mass and physical characteristics. Gathering data from experiments with trained dogs

would also provide useful training data leading up to experiments to be performed with the

cheetah.
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Future functionality

As the OptoForce sensor used to measure actual GRFs was unable to measure torques, 3-axis

moments could not be considered in this project. Future research could include using a more

advanced F/T sensor capable of measuring 3-axis torques in addition to GRFs to investigate

this system’s ability to estimate 3-axis moments (using the existing GRF estimation capability

and some basic mathematics).

As it is envisaged by the UCT Mechatronics Lab that several low-cost force plates will be

arranged in a fashion similar to that in Figure 2.5, a means of synchronising the plates should be

investigated in future research. This may potentially be achieved through physically connecting

and controlling the SYNC pins of the AD7730 chips across the plates or implementing a wireless

synchronisation system through Bluetooth.

112



Bibliography

[1] T. Suchomel, “Force Plate Use in Performance Monitoring and Sport Science Testing”,

IAAF, 2014.

[2] A. Coetsee, “Analysis of the Vertical Ground Reaction Forces in Sports Participants with

Abductor-related Groin Pain: a Comparison Study,” Msc Thesis, University of Stellenbosch,

Stellenbosch, 2016

[3] D. Ortega, R. Bes, E. C. R. de la Rosa, J. Francisco, “Analysis of the vertical ground reaction

forces and temporal factors in the landing phase of a countermovement jump,” Journal of

Sports Science & Medicine, 2010, 9(2), 282.

[4] P. J. McNair, H. Prapavessis & K. Callender, “Decreasing landing forces: Effect of

instruction,” British Journal of Sports Medicine, 2000, 34(4), 293-296.

[5] T. E. Hewett, “Biomechanical measures of neuromuscular control and valgus loading of the

knee predict anterior cruciate ligament injury risk in female athletes: A prospective study,”

The American Journal of Sports Medicine, 2000, 33(4), 492-501.

[6] F. Impellizzeri, E. Rampinini and S. Marcora, “Physiological assessment of aerobic training

in soccer,” Journal of Sports Sciences, vol. 23, no. 6, pp. 583-592, 2005.

[7] F. Loffing, N. Hagemann, B. Strauss and C. MacMahon, Laterality in sports, Academic

Press, 2012.

[8] L. Prosperini and C. Pozzilli, “The Clinical Relevance of Force Platform Measures in

Multiple Sclerosis: A Review,” Multiple Sclerosis International, vol. 2013, pp. 19, 2013.

[9] H. H. Manap and N. M. Tahir, “Detection of Parkinson gait pattern based on vertical ground

reaction force,” in 2013 IEEE International Conference on Control System, Computing and

Engineering, 2013.

[10] M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers, “Stride length regulation in

Parkinsons disease,” Brain, vol. 119, no. 2, pp. 551568, 1996.

[11] P. G. Rosquist et al., “Estimation of 3D Ground Reaction Force Using Nanocomposite

Piezo-Responsive Foam Sensors During Walking,” Annals of Biomedical Engineering, vol.

45, no. 9, pp. 21222134, May 2017.

113



BIBLIOGRAPHY

[12] R. LeMoyne, T. Mastroianni, A. Hessel, and K. Nishikawa, “Application of a Multilayer

Perceptron Neural Network for Classifying Software Platforms of a Powered Prosthesis

through a Force Plate,” in 2015 IEEE 14th International Conference on Machine Learning

and Applications (ICMLA), 2015.

[13] E. Brown, “Cheetah III robot preps for a role as a first responder,”

MIT News, 2018. [Online]. Available: http://news.mit.edu/2018/

cheetah-robot-preps-role-first-responder-sangbae-kim-0326.

[14] “WildCat - The World’s Fastest Quadruped Robot,” Bostondynamics.com, 2018. [Online].

Available:https://www.bostondynamics.com/wildcat.

[15] G. Liu, H. Lin, H. Lin, S. Chen and P. Lin, “A Bio-Inspired Hopping Kangaroo Robot with

an Active Tail,” Journal of Bionic Engineering, vol. 11, no. 4, pp. 541-555, 2014.

[16] S. McCarty, “Impact Force Patterns on a Landing Cat,” ISB Journal of Science, vol. 8,

no. 1, 2014.

[17] A. Patel, B. Stocks, C. Fisher, F. Nicolls, and E. Boje, “Tracking the Cheetah Tail Using

Animal-Borne Cameras, GPS, and an IMU,” IEEE sensors letters, vol. 1, pp. 1-4, 2017.

[18] A. Patel, C. Fisher, B. Stocks, F. Nicolls, and E. Boje, “Tracking the Cheetah Tail and

Spine using Animal-borne Cameras and a Wireless Sensor Network,” in Integrative and

Comparative Biology, 2017, pp. E373-E373.

[19] A. Patel, E. Boje, C. Fisher, L. Louis, and E. Lane, “Quasi-steady state aerodynamics of

the cheetah tail,”Biology Open, vol. 5, pp. 1072-1076, 2016.

[20] A. Patel and M. Braae, “Rapid turning at high-speed: Inspirations from the cheetah’s

tail,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference,

2013, pp. 5506-5511

[21] M. Hildebrand, “Motions of the running cheetah and horse,” Journal of Mammalogy, vol.

40, no. 4, p. 481, 1959.

[22] P. Hudson, S. Corr and A. Wilson, “High speed galloping in the cheetah (Acinonyx jubatus)

and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics,”

Journal of Experimental Biology, vol. 215, no. 14, pp. 2425-2434, 2012.

[23] Y. Guo, “A New Proxy Measurement Algorithm with Application to the Estimation of

Vertical Ground Reaction Forces Using Wearable Sensors,” Sensors, vol. 17, no. 10, p. 2181,

Sep. 2017.

[24] A. Karatsidis, G. Bellusci, H. Schepers, M. de Zee, M. Andersen, and P. Veltink,

“Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial

Motion Capture,” Sensors, vol. 17, no. 12, p. 75, Dec. 2016.

114

http://news.mit.edu/2018/cheetah-robot-preps-role-first-responder-sangbae-kim-0326
http://news.mit.edu/2018/cheetah-robot-preps-role-first-responder-sangbae-kim-0326


BIBLIOGRAPHY

[25] A. W. Garcia, C. R. Langenthal, R. M. Angulo-Barroso, and M. M. Gross, “A Comparison

of Accelerometers for Predicting Energy Expenditure and Vertical Ground Reaction Force

in School-Age Children,” Measurement in Physical Education and Exercise Science, vol. 8,

no. 3, pp. 119144, Sep. 2004.

[26] S. Chuah, Meng YeeKim, “Enabling force sensing during ground locomotion: A bio-

inspired, multi-axis, composite force sensor using discrete pressure mapping,” IEEE Sensors,

vol. 14, no. 5, pp. 16931703, 2014. [Online]. Available: http://ieeexplore.ieee.org/

stamp/stamp.jsp?arnumber=6714415

[27] D. Alveringh, R. A. Brookhuis, “27th IEEE International Conference on Micro Electro

Mechanical Systems, MEMS,” p. 680-683 4 p, 2014

[28] D. Kim, “Six-axis Capacitive Force/Torque Sensor Based on Dielectric Elastomer,” in SPIE

- The International Society for Optical Engineering, 86872J.

[29] J. Huang, C. Y. Wong, “Design of a Novel Six-Axis Force/Torque Sensor based on

Optical Fibre Sensing for Robotic Applications,” in Proceedings of the 15th International

Conference on Informatics in Control, Automation and Robotics, SCITEPRESS - Science

and Technology Publications.

[30] ATI Industrial Automation, “F/T Sensor: Axia80,” Axia80 datasheet.

[31] “Hall Effect and Strain Gage Sensing Technology for Multi-axis Force Plates and Force

Sensors,” Amti.biz, 2018. [Online]. Available: https://www.amti.biz/fps-sensor-tech2.

aspx.

[32] Vernier Software and Technology, “Force Plate,” FP-BTA datasheet.

[33] T. Kleckers, “How does a Piezoelectric Force Transducer Work?”

HBM, 2018. [Online]. Available: https://www.hbm.com/en/7318/

how-does-a-piezoelectric-force-transducer-work/

[34] H. R. Kamrul, “Design and Construction of a Strain Gauge,” 2016.

[35] National Instruments, “Measuring Strain with Strain Gages,” Ni.com, 2016. [Online].

Available: http://www.ni.com/white-paper/3642/en/.

[36] “Force plates - do you need one?,” Kinetic.com.au, 2016. [Online]. Available:https:

//kinetic.com.au/pdf/Force_Plates.pdf

[37] “Linear regression“, En.wikipedia.org, 2018. [Online]. Available: https://en.wikipedia.

org/wiki/Linear_regression.

[38] C. Cortes and V. Vapnik, Machine Learning, vol. 20, no. 3, pp. 273297, 1995.

[39] A. Smola and B. Schlkopf, “A tutorial on support vector regression,” Statistics and

Computing, vol. 14, no. 3, pp. 199-222, 2004.

115

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6714415
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6714415
https://www.amti.biz/fps-sensor-tech2.aspx
https://www.amti.biz/fps-sensor-tech2.aspx
https://www.hbm.com/en/7318/how-does-a-piezoelectric-force-transducer-work/
https://www.hbm.com/en/7318/how-does-a-piezoelectric-force-transducer-work/
http://www.ni.com/white-paper/3642/en/
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression


BIBLIOGRAPHY

[40] J. Greene, “Computational Intelligence,” UCT Course Notes, University of Cape Town,

Cape Town, 2018.

[41] E. Pienaar, “Analytics Part 2: Introduction to Neural Networks,” 1st ed., University of

Cape Town, Cape Town, 2018.

[42] M. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[43] “Underfitting vs. Overfitting, scikit-learn 0.20.0 documentation,” Scikit-learn.org,

2018. [Online]. Available at:http://scikit-learn.org/stable/auto_examples/model_

selection/plot_underfitting_overfitting.html

[44] M. D. Tissera and M. D. McDonnell, “Deep extreme learning machines: supervised

autoencoding architecture for classification,” Neurocomputing, vol. 174, pp. 4249, Jan. 2016.

[45] G. Huang, H. Zhou and X. Ding, “Extreme Learning Machine for Regression and

Multiclass Classification,” IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 42, no. 2, pp. 513-529, 2012.

[46] G. Huang, Q. Zhu and C. Siew, “Extreme learning machine: Theory and applications,”

Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.

[47] “6061 aluminium alloy,” En.wikipedia.org. [online] Available at: https://en.wikipedia.

org/wiki/6061_aluminium_alloy.

[48] OptoForce, “3-Axis Force Sensor,” OMD-45-FH-2000N datasheet.

[49] Analog Devices, “Bridge Transducer ADC,” AD7730/AD7730L datasheet, 2012.

[50] AVIA Semiconductor, “24-bit ADC for Weigh Scales,” HX711 datasheet.

[51] W. Chou, T. H. Meng, “Time domain analysis of sigma delta modulation,” Acoustics,

Speech, and Signal Processing, 1990.

[52] C. Noviello, “Mastering STM32,” Leanpub.

[53] Atmel, “8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash,”

ATmega328p datasheet.

[54] STMicroelectronics, “STM32F405/415, STM32F407/417, STM32F427/437 and

STM32F429/439 advanced Arm-based 32-bit MCUs,” Reference manual RM0090.

[55] STMicroelectronics, “Using the CRC peripheral in the STM32 family,” Appl. Note AN4187

[56] “Cyclic redundancy check”, En.wikipedia.org, 2018. [Online]. Available: https://en.

wikipedia.org/wiki/Cyclic_redundancy_check.

[57] “SoftPot Membrane Potentiometer,” Sparkfun.com, 2018. [Online]. Available: https://

www.sparkfun.com/products/8681.

116

http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://en.wikipedia.org/wiki/6061_aluminium_alloy
https://en.wikipedia.org/wiki/6061_aluminium_alloy
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.sparkfun.com/products/8681
https://www.sparkfun.com/products/8681


BIBLIOGRAPHY

[58] “Micro SD Card Breakout Board”, Learn.adafruit.com, 2018. [Online]. Available:

https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial/

introduction.

[59] [11]“SparkFun OpenLog”, Sparkfun.com, 2018. [Online]. Available: https://www.

sparkfun.com/products/13712.

[60] Y. Kwon, “Ground Reaction Force,” kwon3d.com. [Online]. Available at: http://www.

kwon3d.com/theory/grf/grf.html.

[61] E. Rensch, “What kind of environment does a cheetah live in?” Sciencing.com. [Online].

Available at: https://sciencing.com/kind-environment-cheetah-live-8604570.

html.

117

https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial/introduction
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial/introduction
https://www.sparkfun.com/products/13712
https://www.sparkfun.com/products/13712
http://www.kwon3d.com/theory/grf/grf.html
http://www.kwon3d.com/theory/grf/grf.html
https://sciencing.com/kind-environment-cheetah-live-8604570.html
https://sciencing.com/kind-environment-cheetah-live-8604570.html


Appendix A

Positional Testing: Explanatory

Diagrams and Results

A.1 Switch Co-ordinate System

Figure A.1: Diagram defining the the plate co-ordinate system used in experiments. The hollow
circles represent the 26 switch positions and the grey circles depict the mounting bolt positions
for reference. An example switch at position (1;2) is labelled.
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A.2. SINGLE AXIS POSITIONAL TESTING RESULTS

A.2 Single Axis Positional Testing Results

The resulting prediction errors for single axis (vertical force) data sets obtained over the

entire grid of 26 points are presented in tables A.1 to A.3 below. Note that all results were

obtained using completely unseen (out-of-sample) data that was not used in training of any

of the regression models. R represents the radius of a particular point from the xy origin

(geometric centre) of the plate in cm and x and y are the co-ordinates of the COP position

of the force applied. Note that these are dimensionless units. Note that all regression models

referred to below, unless otherwise specified, were implemented with the default architecture

and parameters defined in Section 8.1.4.
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Table A.1: Table showing the Neural Network prediction errors for vertical force (single axis) positional tests.

x y R [cm] RMSE [N] Error SD [N] Max Error [N] RMSE [%FS] Error SD [%FS] Max Error [%FS]

1 3 9.4663 6.8957 10.959 28.51 0.34478 0.54795 1.4255
0 3 8.5 8.3898 14.067 39.586 0.41949 0.70334 1.9793
-1 3 9.4663 8.8129 11.532 28.557 0.44065 0.5766 1.4278
2 2 9.7701 9.3202 12.673 37.044 0.46601 0.63365 1.8522
1 2 6.5857 6.5813 9.9551 25.931 0.32906 0.49775 1.2965
0 2 5.1 6.2481 8.7465 23.091 0.31241 0.43733 1.1545
-1 2 6.5857 8.4211 13.316 33.321 0.42106 0.66582 1.666
-2 2 9.7701 7.6246 11.906 36.198 0.38123 0.59531 1.8099
2 1 8.505 10.576 11.298 33.177 0.52878 0.56492 1.6589
1 1 4.5001 9.3501 12.614 33.762 0.46751 0.63072 1.6881
0 1 1.7 6.2816 8.8505 23.179 0.31408 0.44252 1.1589
-1 1 4.5001 7.2674 10.743 27.026 0.36337 0.53717 1.3513
-2 1 8.505 6.7116 10.925 31.693 0.33558 0.54626 1.5846
2 -1 8.505 7.298 12.622 38.165 0.3649 0.6311 1.9082
1 -1 4.5001 8.1744 11.318 26.028 0.40872 0.56589 1.3014
0 -1 1.7 6.2816 8.8505 23.179 0.31408 0.44252 1.1589
-1 -1 4.5001 7.3496 11.195 28.485 0.36748 0.55973 1.4243
-2 -1 8.505 5.7986 9.9442 27.187 0.28993 0.49721 1.3594
2 -2 9.7701 5.3888 7.8371 21.912 0.26944 0.39186 1.0956
1 -2 6.5857 6.6683 9.9942 26.656 0.33341 0.49971 1.3328
0 -2 5.1 6.3151 8.9544 23.267 0.31576 0.44772 1.1633
-1 -2 6.5857 7.1991 12.281 32.358 0.35995 0.61406 1.6179
-2 -2 9.7701 9.5327 13.576 35.264 0.47664 0.6788 1.7632
1 -3 9.4663 6.1826 10.809 29.288 0.30913 0.54043 1.4644
0 -3 8.5 9.6835 14.765 68.13 0.48418 0.73826 3.4065
-1 -3 9.4663 10.31 13.217 32.508 0.51548 0.66084 1.6254
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Table A.2: Table showing the linear regressor prediction errors for vertical force (single axis) positional tests.

x y R [cm] RMSE [N] Error SD [N] Max Error [N] RMSE [%FS] Error SD [%FS] Max Error [%FS]

1 3 9.4663 10.802 12.209 28.049 0.5401 0.61044 1.4025
0 3 8.5 8.4578 13.202 36.693 0.42289 0.66011 1.8346
-1 3 9.4663 11.249 11.216 29.998 0.56246 0.5608 1.4999
2 2 9.7701 12.544 14.158 37.352 0.6272 0.7079 1.8676
1 2 6.5857 7.0253 8.993 21.014 0.35126 0.44965 1.0507
0 2 5.1 6.6698 8.7121 19.901 0.33349 0.4356 0.99506
-1 2 6.5857 10.392 16.393 43.127 0.51959 0.81967 2.1564
-2 2 9.7701 9.3931 11.967 30.517 0.46965 0.59836 1.5258
2 1 8.505 8.6637 11.784 33.536 0.43318 0.5892 1.6768
1 1 4.5001 10.597 17.968 41.616 0.52986 0.8984 2.0808
0 1 1.7 6.8094 8.6785 20.592 0.34047 0.43392 1.0296
-1 1 4.5001 10.662 16.25 41.286 0.53312 0.8125 2.0643
-2 1 8.505 9.8341 11.834 29.933 0.4917 0.59172 1.4966
2 -1 8.505 12.077 16.75 36.761 0.60383 0.8375 1.8381
1 -1 4.5001 8.6514 11.519 25.726 0.43257 0.57597 1.2863
0 -1 1.7 6.8094 8.6785 20.592 0.34047 0.43392 1.0296
-1 -1 4.5001 13.412 17.17 39.71 0.67058 0.85849 1.9855
-2 -1 8.505 10.275 11.702 29.349 0.51376 0.58508 1.4674
2 -2 9.7701 9.243 11.462 32.211 0.46215 0.57312 1.6105
1 -2 6.5857 7.8592 10.62 29.804 0.39296 0.53102 1.4902
0 -2 5.1 6.9489 8.6449 21.282 0.34745 0.43225 1.0641
-1 -2 6.5857 8.9905 13.736 35.305 0.44953 0.68682 1.7653
-2 -2 9.7701 11.157 15.892 42.92 0.55785 0.79459 2.146
1 -3 9.4663 7.0039 9.4273 24.224 0.3502 0.47137 1.2112
0 -3 8.5 10.376 15.73 74.89 0.51878 0.78652 3.7445
-1 -3 9.4663 14.94 18.744 46.071 0.747 0.93719 2.3036
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Table A.3: Table showing the ELM prediction errors for vertical force (single axis) positional tests.

x y R [cm] RMSE [N] Error SD [N] Max Error [N] RMSE [%FS] Error SD [%FS] Max Error [%FS]

1 3 9.4663 7.9825 11.023 29.099 0.39913 0.55113 1.4549
0 3 8.5 9.2163 15.038 41.338 0.46082 0.75192 2.0669
-1 3 9.4663 8.2212 12.445 32.713 0.41106 0.62223 1.6356
2 2 9.7701 10.998 14.65 45.414 0.54992 0.73249 2.2707
1 2 6.5857 7.5583 9.7281 23.003 0.37791 0.4864 1.1501
0 2 5.1 6.6727 9.481 24.313 0.33364 0.47405 1.2156
-1 2 6.5857 9.8502 14.285 33.376 0.49251 0.71425 1.6688
-2 2 9.7701 8.0922 12.685 39.194 0.40461 0.63423 1.9597
2 1 8.505 11.305 11.262 32.971 0.56524 0.56312 1.6485
1 1 4.5001 9.6807 12.692 34.668 0.48404 0.63462 1.7334
0 1 1.7 7.4223 10.517 24.649 0.37111 0.52583 1.2325
-1 1 4.5001 7.4794 12.233 32.297 0.37397 0.61165 1.6148
-2 1 8.505 7.8157 12.571 37.346 0.39078 0.62855 1.8673
2 -1 8.505 7.4752 12.417 36.689 0.37376 0.62085 1.8344
1 -1 4.5001 8.6408 11.65 26.959 0.43204 0.5825 1.348
0 -1 1.7 7.4223 10.517 24.649 0.37111 0.52583 1.2325
-1 -1 4.5001 7.2586 10.997 26.348 0.36293 0.54984 1.3174
-2 -1 8.505 7.5392 12.457 35.498 0.37696 0.62287 1.7749
2 -2 9.7701 5.5324 8.3174 22.654 0.27662 0.41587 1.1327
1 -2 6.5857 6.6263 10.737 30.361 0.33132 0.53684 1.5181
0 -2 5.1 8.1719 11.552 24.986 0.40859 0.57762 1.2493
-1 -2 6.5857 7.4513 12.519 33.8 0.37257 0.62594 1.69
-2 -2 9.7701 10.233 14.549 36.479 0.51167 0.72743 1.824
1 -3 9.4663 6.7387 9.221 23.79 0.33694 0.46105 1.1895
0 -3 8.5 24.251 20.696 55.432 1.2126 1.0348 2.7716
-1 -3 9.4663 8.7451 12.782 33.746 0.43725 0.6391 1.6873
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A.2. SINGLE AXIS POSITIONAL TESTING RESULTS

Figure A.2: Heat map over the 26 switch positions showing the RMS errors of an ELM predictor
as a percentage of the full scale force of 2000N.

Figure A.3: Heat map over the 26 switch positions showing the RMS errors of a linear regression
predictor as a percentage of the full scale force of 2000N.
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A.3. 3 AXIS POSITIONAL TESTING RESULTS

A.3 3 Axis Positional Testing Results

The resulting prediction errors for 3 axis experiments obtained over the entire grid of 26 points

are presented in tables A.4 to A.5 below. Note that all results were obtained using completely

unseen (out-of-sample) data that was not used in training of any of the regression models. As

above, R represents the radius of a particular point from the xy origin (geometric centre) of the

plate in centimetres and x and y are the co-ordinates of the COP position of the force applied.

Note that these are dimensionless units. Note that all regression models referred to below, unless

otherwise specified, were implemented with the default architecture and parameters defined in

Section 8.1.4

Figure A.4: Table showing neural network prediction errors for each of the 3-axis GRF
component forces over the full 26-point positional grid
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A.3. 3 AXIS POSITIONAL TESTING RESULTS

Figure A.5: Table showing ELM prediction errors for each of the 3 axis GRF component forces
over the full 26-point positional grid
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A.3. 3 AXIS POSITIONAL TESTING RESULTS

Figure A.6: Table showing linear regression model prediction errors for each of the 3-axis GRF
component forces over the full 26-point positional grid

Figures A.7 to A.9 below show heat maps of the RMS errors from a neural network in estimating

3 axis GRFs. Error for the three GRF components separately as a percentage of the full scale

force (%FS) over the 26 testing points on the plate. As before, (x; y) co-ordinates are shown

with reference to the plate co-ordinate scheme detailed in Figure 9.5. Only the heat maps

correspond to the 3 axis components of the neural network model are shown as it was deemed

that patterns exhibited by the other models did not offer any more useful information.
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A.3. 3 AXIS POSITIONAL TESTING RESULTS

Figure A.7: Heat map over the 26 switch positions showing the RMS errors of the Fx profile
estimated by a NN with default architecture

Figure A.8: Heat map over the 26 switch positions showing the RMS errors of the Fy profile
estimated by a NN with default architecture
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A.3. 3 AXIS POSITIONAL TESTING RESULTS

Figure A.9: Heat map over the 26 switch positions showing the RMS errors of the Fz profile
estimated by a NN with default architecture
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Appendix B

Mechanical Drawings

B.1 OptoForce Mounting Brace

Figure B.1: Mechanical drawing of the mounting brace designed to prevent unwanted lateral
motion of the OptoForce sensor during testing

B.2 Force Plate Structural Components

All components in this section (unless explicitly specified) are based on the mechanical design

proposed by Patel, Fisher et al.
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B.2. FORCE PLATE STRUCTURAL COMPONENTS

Figure B.2: Mechanical drawing (courtesy of the UCT Mechatronics Lab) of the bottom plate
of the force platform

Figure B.3: Mechanical drawing (courtesy of the UCTMechatronics Lab) of the load cell mounts
used to secure load cells at 45°between bottom and top plates of the force platform
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B.2. FORCE PLATE STRUCTURAL COMPONENTS

Figure B.4: Mechanical drawing (courtesy of the UCT Mechatronics Lab) of the top plate of
the force platform
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Appendix C

Embedded Software: Supporting

Diagrams and Tables

C.1 STM32 Diagrams

Figure C.1: Diagram showing the bus architecture of the STM32F1 from [52]. Notice DMA
units with separate bus connections to the APB periherals. Note that the architecture for the
STM32F4 is largely the same.
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C.2. AD7730

C.2 AD7730

Figure C.2: Table showing a summary of the on-chip registers in the AD7730

(a) Register select bits (b) Read/write bits

Figure C.3: Tables showing the bit patterns used to enable read/write mode as well as to select
the target register for writing to/reading from
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C.2. AD7730

Figure C.4: Flowchart from [49] showing the procedure to read from the AD7730 registers in
both single and continuous mode. A table of byte values used in the flow chart that correspond
to the different target registers is also shown.

Figure C.5: Flowchart from [49] showing the procedure to write to the AD7730 registers. A
table of byte values used in the flow chart that correspond to the different target registers is
also shown.
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Appendix D

Literature Review Supporting Data

Data pertaining to the morphology of the cheetahs and greyhounds discussed in [22] is presented

in Table D.1 below.

Figure D.1: Table showing the mass and other physical characteristics of cheetahs and
greyhounds observed in the study conducted in [22]

D.1 Commercial Force Plate Pricing

A quotation received from HiTech Therapy is presented below. The prices of three different

popular commercial force plates are listed.
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Number:
Date:
Page:
Reference:
Expiry:
Account:

QU-CP1-000066326
10/16/2018
1

11/13/2018
UNIV17

UNIVERSITY OF CAPE TOWN
UNIVERSITY OF CAPE TOWN
FINANACE 
DEPARTMENT/CREDITORS SECTION
PRIVATE BAG X 3

CLINICAL RESEARCH
E-FLOOR E51 ROOM 51.44
OLD MAIN BUILDING, GROOTE 
SCHUUR
OBSERVATORY  

Sold To: Ship To:

Item Description Quantity

HiTech Therapy CC
50 Design Boulevard
Northlands Deco Park, New Market Road
Northriding GAUTENG 2010
Ph: 011-704 0002  Fax: 011-704 4999
Email: accounts@htherapy.co.za
Reg: CK94/007769/23  VAT: 4060142249

Customer VAT: 4540125707

Unit

Quote

Sales Person: JUAN PIENAAR

30 Days From Statement

TotalVATUnit Price Discount

9999 ACP - AccuPower Jumping and 
Power Analysis Platform     
ACP-A

 1 EACH  280,000.00  36,521.74  280,000.00 1

9999  BP12001200 - Strain Gage 
Force Platform

 1 EACH  940,000.00  122,608.70  940,000.00 2

9999  BP400600-OP - Force Platform                                                 
BP400600-OP-1000

 1 EACH  300,000.00  39,130.44  300,000.00 3

Subtotal:

Total:

R 1,321,739.12

R 198,260.88

R 1,520,000.00

Powered by Palladium Software (Pty) Ltd® - ©2012 (www.palladium.co.za)

Discount:

VAT:

R 0.00

NOTE: PRICES SUBJECT TO EXCHANGE RATE FLUCTUATIONS.

BANKING DETAILS: STANDARD BANK SANDTON
BRANCH CODE: 019205 ACC NO: 022688307

Received in good order
Signed___________________ Date__________________

10/16/2018  4:07:09PM



D.2. OPTOFORCE SPECIFICATIONS

D.2 OptoForce Specifications

Figure D.2: Table showing the performance specifications of the OptoForce OMD-45-FH-2000N
3-axis force sensor
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Appendix E

Additional Circuit Schematics

A circuit schematic of the motherboard designed in Chapter 6 is presented in Figure E.1 on

the following page. Note that GPIO pin net references (such as PA1) refer to those of the

STM32F407 MCU.

138



Figure E.1: Schematic diagram of the motherboard circuit
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