
World Wide Mind: Real-time EEG decoding
across 100 brains

Dissertation, MSc Applied Machine Learning

James Teversham, CID 01997171

2 September 2021

Prepared for Prof Tim Constandinou

Department of Electrical and Electronic Engineering, Imperial College London

Statement of Originality

I, James Teversham, hereby certify that:

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is
one’s own.

2. I have used the IEEE convention for citation and referencing. Each contribution to, and
quotation in, this report from the work(s) of other people has been attributed, and has been
cited and referenced.

3. This report is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing
it off as their own work or part thereof.

Signed

2 September 2021

i

Foreword and Acknowledgements

This project has been a true test of what I believe Engineering is - or at least should be - about; a
collection of tools that one acquires and develops to solve challenging inter-disciplinary problems
in possibly foreign domains. It has thoroughly tested my technical and problem solving skills
across several subject areas, including mathematics and statistics, signal processing, electronics,
embedded systems programming, web programming and general patience. In addition, through
this project, I have learnt about basic neurophysiology and associated neurotechnologies - fields
which I was close to clueless about coming in to it. The brain truly is one of nature’s most
incredible and fascinating machines and this project has inspired me to try understand my own
one a little more.

My most sincere vote of gratitude goes to the members of the Imperial NGNI Lab. Whether I was
in Cape Town, Egypt or London, you managed to meet with me nearly every week since project
inception to hear of my progress and more commonly, my trials and tribulations. Your advice
and patient guidance was indispensable to me and the success of this project. I am most thankful
for your time and wish you every success.

Finally, I thank my parents and family back home in Cape Town for their endless interest and
support in my endeavours. Life in COVID has been challenging to say the least and I am extremely
grateful for your help and encouragement. I hope that I have done you proud.

ii

Abstract

The cost of existing brain-computer interface (BCI) technologies makes them inaccessible to the
general public and largely prohibits their use on a mass scale. This project details the development
of a novel, ultra low-cost BCI prototype that attempts to start changing this. This prototype, and
its future extensions, is hoped to facilitate public engagement and education in the domain of
EEG sensing and other neurotechnologies, as well as improving advocacy an encouraging further
research funding.

In particular, this study presents the development of real time decoding and communication of
raw EEG signals acquired from an ultra low-cost proprietary EEG-based BCI device developed by
the Next Generation Neural Interfaces (NGNI) Lab at Imperial College. It forms part of a broader
project being coordinated by the NGNI Lab that will be presented in an exhibition hosted by the
Royal Society. The BCI prototype developed in this project will be worn by up to 100 different
audience members at this exhibit and will serve to decode basic EEG signals concurrently and
in real time in order to facilitate collaborative control in a multi-player game using only mental
control.

This project was designed under very challenging constraints, including: a budget of around 20
GBP (compared to the price of several hundred GBP for a typical BCI device), availability of
only a single EEG channel and the limitation of dry surface electrodes. The steady state visual
evoked potential (SSVEP) paradigm is used as the BCI control signal of choice owing to its ease of
implementation, relatively high achievable SNR and the fact that it does not require user training.
Based on their wide-spread used in the field of EEG signal processing, decoding algorithms based
on canonical correlation analysis (CCA) such as Multi-set CCA (MsetCCA) and Generalised CCA
(GCCA) are explored most closely. An MQTT client for publishing decoded data to a cloud service
using Amazon Web Services (AWS) IoT Core is also implemented in firmware. Towards the
objective of creating a fully mobile BCI, all operations necessary for signal acquisition, processing,
decoding and communication are capable of running on the device itself. This functionality is
fully implemented in the firmware of the electronic hardware provided by the NGNI Lab based
on the ESP32 SoC by Espressif Systems. All firmware is implemented in Micropython, the cross-
architecture Python compiler and runtime for microcontrollers that runs on bare-metal.

Subject to performing a short calibration sequence each time the BCI is put on, optimal results
show that decoding accuracy of 95.56 ± 3.74% with an information transfer rate (ITR) of 102
bits/min (p = 4 calibration trials of T = 0.75s each) can be achieved by the MsetCCA algorithm.
With more modest calibration requirements (p = 2 calibration trials of T = 1s each), accuracy of
80.56± 4.46% with an ITR of 40 bits/min can be achieved using the same algorithm. All decoding
computation occurs on-device in real time.

Although the fact that data was only collected from a single test subject in this study is a significant
limitation, the prototype produced nonetheless presents a very encouraging proof-of-concept that
warrants further investigation and more stringent testing. Importantly, it has been developed with
exclusively open source tools and all source code is freely available here.

iii

https://www.imperial.ac.uk/next-generation-neural-interfaces/
https://github.com/JamesTev/EEG-decoding

Contents

List of Figures 1

List of Tables 2

1 Introduction 4
1.1 Background and Motivation . 4
1.2 Objectives of the Study . 4

1.2.1 Research questions to be investigated . 5
1.2.2 Significance of this work . 5

1.3 Scope and Constraints . 5
1.3.1 Constraint implications . 6

1.4 Plan of Development . 6

2 Literature Review 7
2.1 Basic neurophysiology . 7

2.1.1 Electrophysiology . 7
2.1.2 Functional neuroimaging . 7

2.2 Electroencephalography . 7
2.2.1 Invasive vs non-invasive techniques . 7
2.2.2 The nature of EEG signals . 8
2.2.3 Electrode choice and placement . 8
2.2.4 BCI control signals . 8

2.3 Steady-state visual evoked potentials (SSVEP) . 10
2.3.1 Evoking and measuring SSVEPs . 10

2.4 Computational Approaches for SSVEP Decoding . 11
2.4.1 Power spectral density and frequency domain . 11
2.4.2 Statistical . 13

2.5 Existing BCI Technology . 14

3 Theory Development 16
3.1 Eigenvalue Optimisation . 16

3.1.1 Optimisation form I . 16
3.1.2 Optimisation form II . 16
3.1.3 Power iteration . 17
3.1.4 Simultaneous iteration . 18
3.1.5 QR iteration algorithm . 18

3.2 SSVEP Decoding Algorithms . 18
3.2.1 Canonical correlation analysis (CCA) . 18
3.2.2 Task-related component analysis (TRCA) . 20
3.2.3 Multiset CCA (MsetCCA) . 21
3.2.4 Generalised CCA (GCCA) . 22

4 Apparatus and Experimental Procedure 24
4.1 BCI Apparatus . 24

4.1.1 OpenBCI Ganglion . 24
4.1.2 NGNI Prototype I . 25

iv

Contents

4.1.3 NGNI Prototype II . 27
4.2 Experimental Procedure . 28

4.2.1 Data acquisition . 28
4.2.2 Testing and verification . 29
4.2.3 Demonstration procedure . 29

5 System Design 30
5.1 Design of the SSVEP Stimuli . 30

5.1.1 SSVEP stimulus interface . 30
5.2 Design of the Digital System . 31

5.2.1 Digital signal processing system . 31
5.3 Embedded Firmware . 32

5.3.1 MicroPython . 33
5.3.2 Module structure . 34
5.3.3 Numerical computation . 35
5.3.4 Networking . 35
5.3.5 Logging . 36
5.3.6 Digital filtering . 37

5.4 Algorithm Implementation . 37
5.4.1 Eigenvalue algorithms . 37
5.4.2 Decoding algorithms . 39

6 Results 41
6.1 Hardware Verification and Testing . 41

6.1.1 DSP system . 41
6.1.2 Hardware and data acquisition . 43
6.1.3 Execution time profiling . 44

6.2 Experimental Decoding Results . 44
6.2.1 The effect of recording window length . 45
6.2.2 The effect of varying calibration trials . 45
6.2.3 Generalisation testing . 45

7 Discussion of Results and Methodologies 50
7.1 Digital signal processing system . 50
7.2 Decoding . 50

7.2.1 Online decoding . 51
7.2.2 Generalisation ability . 51

7.3 Networking and communication . 52
7.4 System Design and Methodologies . 52

7.4.1 Challenges encountered . 52
7.4.2 Limitations of the system . 52
7.4.3 Choice of development tools . 53

8 Conclusion and Future Work 54
8.1 Conclusion . 54
8.2 Future work . 54

A Appendices 56
A.1 Firmware Implementations . 56
A.2 EEG Hardware Schematics . 57

Bibliography 63

v

List of Figures

2.1 Electrode positions according to the 10-20 system . 9
2.2 Experimental SSVEP stimulus grid configurations adapted from [31] 12

4.1 Images of the OpenBCI Ganglion bio-sensing device and electrodes 24
4.2 Images of the electronic hardware prototype developed in the Imperial NGNI Lab 26
4.3 Functional overview diagram of the analogue signal processing system in the NGNI electronic

hardware prototype. 26
4.4 A very rudimentary first prototype EEG headband . 27
4.5 Images of the final complete hardware system comprising electronic and mechanical EEG hard-

ware. All hardware was designed by the NGNI Lab. The band is intended to be worn such that
the electrodes make contact with the back of the scalp in the occipital or parieto-occipital region. . 28

4.6 Diagram showing the arrangement of the stimulus display device relative to a subject undergoing
the experiment . 28

5.1 Screen capture of the user interface for displaying SSVEP stimuli. The blocks can be independently
set to any flicker frequency of interest. 30

5.2 Overview diagram of the core components that comprise the digital system designed in this project. 31
5.3 Digital signal processing system . 31
5.4 Diagram showing SSVEP stimulus frequency bands and other important frequencies 32
5.5 Frequency response of the digital low-pass filter implemented in firmware on the ESP32 33
5.6 Diagram showing the client-broker MQTT interface for communication with AWS IoT Core 36
5.7 Diagram showing the web logger interface . 36

6.1 Time domain plot showing the measured square wave signal together with the digitally-filtered
output signal. 42

6.2 PSD estimates of a measured input signal and its filtered output . 42
6.3 PSD estimates of an input signal, filtered and downsampled version and a downsampled version

without filtering. 43
6.4 Alpha band test: periodograms showing N = 1024 point PSD estimates for EEG signals measured

from a subject in two distinct states: with eyes open and eyes closed. 43
6.5 Execution time distributions for key processes in the sample-process-decode-publish loop. 44
6.6 Leave-p-out cross validation (Lpo CV) . 45
6.7 GCCA decoding accuracy, varying T: effect of varying recording window length T on validation

accuracy for different numbers of calibration trials p . 46
6.8 MsetCCA decoding accuracy, varying T: effect of varying recording window length T on valida-

tion accuracy for different numbers of calibration trails p . 47
6.9 GCCA decoding accuracy, varying p: effect of varying the number of training (calibration) trials p

on validation accuracy for recording windows of varying length T. 47
6.10 MsetCCA decoding accuracy, varying p: effect of varying the number of training (calibration)

trials p on validation accuracy for recording windows of varying length T. 48
6.11 Graphs showing variance in decoding accuracy across the triad of stimulus frequencies at each

value of p. 48
6.12 GCCA generalisation performance: test decoding accuracy when calibrating and testing on data

collected from distinct sessions under different conditions . 48
6.13 MsetCCA generalisation performance: test decoding accuracy when calibrating and testing on

data collected from distinct sessions under different conditions . 49

1

List of Tables

2.1 Summary of commonly designated EEG signal frequency bands and their broad physiological
associations . 8

2.2 A summary of commonly used BCI control signal paradigms . 10

4.1 Table showing the theoretical range of voltages measured at the ADC of the ESP32 for varying
input signal magnitudes and gain configurations . 27

6.1 GCCA results summary: a compilation of decoding performance metrics for the GCCA algorithm. 49
6.2 MsetCCA results summary: a compilation of decoding performance metrics for the MsetCCA

algorithm. 49

2

List of Source Code Listings

1 Basic MicroPython code to import user-specific modules and read from a text file in non-
volatile storage. 34

2 Illustration of the convenience offered by the ulab module for linear algebra and general nu-
merical computing. 35

3 Example JSON data payload sent from a remote ESP32 device via POST HTTP request to the
logging server . 37

4 MicroPython implementation of the Power Iteration algorithm presented in Algorithm 1 for
finding the maximum real eigenvalue of a symmetric, real-valued matrix 56

5 MicroPython implementation of the QR Iteration algorithm presented in Algorithm 3 56
6 MicroPython implementation of the generalised eigenvalue algorithm in Algorithm 4 60
7 MicroPython implementation of the CCA algorithm from Algorithm 5 60
8 MicroPython implementation of the MsetCCA algorithm from Algorithm 7 61
9 Python implementation of the GCCA algorithm from Algorithm 6 62

3

Chapter 1

Introduction

1.1 Background and Motivation

A brain-computer interface (BCI), also known as brain-machine interface (BMI), is a system that allows
computers or other external devices to be controlled by electroencephalographic (EEG) activity alone [12].
The most common application of BCIs is to provide a means of communication to people who have lost
the means to do so in a normal capacity, typically due to injury, trauma or preexisting impairments of the
neuromuscular system. Particularly in the case of fully paralysed or ’locked in’ patients suffering disorders
such as amyotrophic lateral sclerosis (ALS), strokes or spinal cord injuries, advances in BCI technology pose
a promising means of restoring the ability to communicate with the outside world [4]. This is made possible
by measuring and characterising (decoding) brain activity in order to translate raw EEG signals into external
control commands without any neuromuscular interaction. External control targets may be in the form of
computer-based spellers, speech synthesizers or neural prostheses [12].

In some cases of severe impairment, invasive EEG treatment is required which involves implantation of elec-
trode arrays on the surface of the brain. However, non-invasive EEG is far more prevalent as it only requires
surface electrodes placed on the scalp of a subject and is thus safer, more convenient and far more accessible
[27]. BCIs using this technology have found applications in smart home appliances, disability assistance
and human-computer interaction [31]. For example, a patient bound to their bed due to neuromuscular
impairments could interact with a BCI to adjust lighting, heating, television or other appliances.

A challenge with existing BCI technologies is their cost which, in many cases, prohibits their use on a mass
scale. In this project, a novel, ultra low-cost1 EEG-based BCI system will be created in order to investigate
the viability of acquiring and decoding EEG activity from an audience of 100 people simultaneously.

Importantly, the success of this project would provide great opportunities for public engagement and educa-
tion in the domain of EEG sensing and other neurotechnologies. For example, it is conceivable that a future
version of this prototype could be used in summer schools or other educational activities to give young learn-
ers hands-on experience with this otherwise expensive and largely inaccessible technology. More widespread
public demonstrations such as these will increase and improve advocacy for this technology which may, at
present, be somewhat stigmatised in some communities due to its opaqueness and potentially, due to the
negative association with mind control or other dramatised pop culture analogues.

Increased public interest and accessibility, in turn, will likely encourage further funding for this fascinating
field of research. Furthermore, while the initial demonstration of this project will be performed on healthy
individuals, it could provide great promise for facilitating large scale, inclusive interaction among people
with neuromuscular impairments such as those mentioned above.

1.2 Objectives of the Study

The core focus of this study is to develop real time decoding and communication of raw analogue EEG sig-
nals acquired from a proprietary EEG hardware device developed by the Next Generation Neural Interfaces
(NGNI) Lab at Imperial College London. These devices will be worn by up to 100 people simultaneously
and will be used to facilitate collaborative control in a multiplayer game2. Consequently, decoding, commu-
nication and visualisation needs to happen concurrently and in real time between devices.

Specific objectives of this project are outlined below:

1In the region of 10 to 20 times less expensive than the cheapest comparable commercial model
2not included in the scope of this project

4

1.3. Scope and Constraints

1. Review the literature pertaining to EEG signal acquisition and decoding. Perform a brief survey of
common EEG paradigms and decide on a particular paradigm for further investigation based on a clear
rationale.

2. Review decoding techniques and algorithms for the selected EEG paradigm. Record the most effec-
tive algorithms as specified in the literature, as well as their analytical derivations in preparation for
implementation.

3. Scope firmware most suitable for the microcontroller used in the EEG hardware supplied by the NGNI
Lab.

4. Design and implement embedded software required to sample EEG signals and perform online decod-
ing thereof using previously identified decoding algorithms.

5. Determine the optimal network protocol and structure to communicate decoded data and any other
pertinent device-specific information to a cloud service.

6. Devise testing mechanisms to verify the validity of obtained results.

7. Critically evaluate the performance of the system with reference to the objectives of this study

8. Provide a discussion of results obtained and provide reasons for any shortcomings or anomalies. Pro-
vide suggestions for further improvement.

1.2.1 Research questions to be investigated

This project aims to address the following core research questions:

• Can an ultra low-cost (in the region of £20) device be used to decode EEG signals of interest in real
time? If so, to what degree of accuracy and under what limitations?

• If so, can such a device perform all computation necessary for signal decoding on-device (without the
need to outsource computation to the cloud or end client, for example)?

1.2.2 Significance of this work

If able to fulfil its aforementioned objectives, this device would serve as a significant proof-of-concept system
in the area of EEG signal analysis. Importantly, as specified by the constraints below, this device is to be
built using low cost, easily accessible components. Commercial EEG devices, as explored in Section 2.5, are
typically priced from several hundred GBP and upwards. Very few, if any, devices are available for less
than 100 GBP. Therefore, while likely slightly less capable than the aforementioned commercial counterparts,
the device investigated in this project could pose an interesting low-cost option for large scale EEG data
acquisition, testing and experimentation. Furthermore, as alluded to in the motivation in Section 1.1, it could
become a valuable pedagogical tool for engaging and educating young learners about basic neurophysiology
and neurotechnology; fields that would otherwise be difficult to access below a tertiary education level.

1.3 Scope and Constraints

The task of using this device at scale in a public setting imposes some unique practical constraints. These are
outlined below:

• production at scale: 100+ replicas of the BCI device need to be produced.

• very tight budget of ≈ £20 per device.

• hardware must be self-contained and so all computation should happen on the hardware if possible.

• there is to be minimal calibration required from the user. If any, it should be done automatically and
should not detract significantly from the overall user experience.

• real time decoding and feedback of signals (or as close to real time as possible).

• device should be non-invasive and cannot use ‘wet’ electrodes that would hamper the user experience.

The EEG hardware provided by the NGNI Lab is based on the low-cost Espressif ESP32 SoC based on the
Tensilica Xtensa LX6 MCU. All firmware must be developed on this device.

Finally, every effort must be taken to use exclusively open source software, tools and other resources in
developing this system. This will create a platform most suitable for the education space as it will afford
the ability to easily modify, extend or deconstruct the system as a result of having accessible resources;

5

1.4. Plan of Development

both on a physical hardware/firmware level, as well as in the form of vast open source communities and
documentation.

1.3.1 Constraint implications

The constraints listed above have substantial implications on my project. One of the largest constraints is the
budget of £20; entry level consumer-grade BCIs (brain computer interfaces) typically cost in the region of
several hundred USD. As a result, the device in this project will only have two active electrodes measured
in a differential configuration to yield only a single active channel. Although most BCIs have many more
active channels, many studies have shown that a viable decoding system can be achieved with only a limited
number of channels [10], some with even as few as 2 [32].

The prohibition of wet electrodes is also significant. Wet electrodes are known to significantly improve the
quality3 of the electrical connection to the scalp which would invariably improve SNR.

1.4 Plan of Development

This report begins with a review of the basics of neurophysiology and how electrical signals are used by
the human brain. An overview of the mechanics of electroencephalography (EEG) is presented, followed by
some of the popular EEG paradigms explored in the literature. A particular paradigm is selected for further
analysis. The current state-of-the-art in EEG signal decoding for the selected EEG paradigm is explored both
from a technological and theoretical perspective.

Chapter 3 expands on the theory of decoding algorithms that are most applicable to this project. This theory
expansion is vital as it lends a far easier understanding of the final implementation in software. Various
computational approaches are explored and their advantages and disadvantages analysed.

Chapter 5 explores the design of the embedded software required to execute the decoding algorithms intro-
duced in the previous chapter. Auxiliary components, such as networking and communication infrastructure,
are also explored. Computational challenges and the evolution of their solutions are presented.

Results of the implemented BCI system are provided in Chapter 6. Results for preliminary verification and
diagnostic tests are provided, followed by those attained in decoding experiments performed using the final
system prototype.

A discussion surrounding the system design and methodology, as well as results obtained, is provided in
Chapter 7. Finally, conclusions are drawn and suggestions for improvement in further work are provided in
Chapter 8.

3by reducing contact impedance

6

Chapter 2

Literature Review

2.1 Basic neurophysiology

2.1.1 Electrophysiology

EEG relies on electrophysiological activity generated by electro-chemical neurotransmitters that exchange
signals between neurons in the brain [12]. Roughly speaking, when a neuron is excited by afferent action
potentials (rapid changes in cell membrane potentials), postsynaptic potentials (EPSPs) are generated in its
apical dendrites [2] (neural branches). This induces a potential difference (dipole) which results in a small
flow of current from the nonexcited soma membrane to the apical dendrites where the EPSPs are present.
[2]. This process causes both intracellular current flow within the neuron, as well as extracellular current
flow. These current flows are termed primary and secondary or return currents respectively. Both such currents
contribute to electrical potentials measured on the scalp. However, it is believed that the source of most
measurable EEG potentials arises from large collections of cortical pyramidal neurons arranged in macro-
assemblies with dendrites orientated perpendicularly to the local cortical surface [2], [3]. The specific spatial
positioning and simultaneous activation of these large clusters of neurons is believed to generate signals
that can be measured on the scalp. Specifically, [2] suggests that these signals most likely arise from EPSPs
in these macro-assemblies and less so due to rapidly firing action potentials that travel along the axons of
excited neurons.

2.1.2 Functional neuroimaging

Various techniques exist for measuring and translating brain activity into electrical signals. These techniques
are typically grouped into electrophysiological and hemodynamic. Hemodynamic techniques such as func-
tional magnetic resonance (fMRI) and near infrared (NIR) spectroscopy measure brain activity indirectly by
tracking relative concentrations of oxyhemoglobin. The blood releases glucose to active neurons at a greater
rate than inactive ones which causes an increase in oxyhemoglobin in these active areas [12], thereby provid-
ing a measurable proxy for cerebral activity. While hemodynamic approaches offer superior spatial resolution,
they typically offer far lower temporal resolution and require complex, expensive equipment.

EEG, on the other hand, is a electrophysiological technique that relies on the direct measurement of electrical
signals generated by neural cell assemblies. Owing to the fact that it offers high temporal resolution1, far
lower cost than most other techniques, good portability and safety, EEG has become the most widely used
neuroimaging modality [12]. It is these factors that make EEG most appropriate for this project.

2.2 Electroencephalography

2.2.1 Invasive vs non-invasive techniques

The ability to reliably detect EEG signals is made challenging by the fact that neuron potentials must pass
through the skull and scalp and will unavoidably be measured in conjunction with background noise and
other undesirable artefacts such as electromyography (EMG) signals. Invasive methods that require surgi-
cal implantation of electronic devices are sometimes used in order to circumvent some of these challenges.
Electrocorticography or intercranial EEG is an example of an invasive method; an electrode array is placed
directly on the exposed surface of the brain to measure cerebral activity. Intracortical signal analysis is an-
other emerging invasive encephalography technique used in BCIs that involves implantation of electrodes in

1typically in the order of tens of milliseconds

7

2.2. Electroencephalography

the grey matter of the brain. Examples of this technique include local field potential (LFP), single/multi=unit
activity (S/MUA) and entire spiking activity (ESA).

While invasive methods offer superior signal resolution and quality, they are clearly not suitable for this
project. Non-invasive BCIs do not require any surgical intervention and only involve the placement of
electrodes on the scalp of the subject. Despite the aforementioned challenges of measuring signals of poorer
quality, this has the advantage of convenience, cost effectiveness, safety and minimal invasiveness.

2.2.2 The nature of EEG signals

EEG signals most commonly range in amplitude from 0.5 to 100µV peak-to-peak [3] (in the case of a healthy
brain). For reference, this is roughly 100 times lower than the typical amplitude of ECG signals. It is widely
believed that EEG signals show varying energy in a few distinct frequency bands depending on mental state
and cognitive function of a subject [2], [6]. These frequency bands are summarised below [6], [12]:

Frequency band Physiological association

delta (0.5 - 4Hz) Usually only detected in a state of deep sleep. Excessive signal energy in the delta band
while awake may suggest neurological disease.

theta (4 - 8Hz) Cognitive tasks involving association, awareness and meditation. Usually low energy
in this band while subject is awake.

alpha (8 - 13Hz)
Typically measured in the occipital region of the brain. Primarily related to visual processing
but also memory processes. Induced by closing of the eyes and relaxing and attenuated when
eyes are open or by thinking or mental calculation.

beta (12 - 30Hz) A variety of mental processes such as mathematical computation, planning, high
level processing

Table 2.1: Summary of commonly designated EEG signal frequency bands and their broad physiological
associations

It is worth noting that different areas of the brain may produce signals with different energy compositions
across these frequency bands. Consequently, the particular placement of electrodes in measuring localised
signals of interest is an important consideration.

2.2.3 Electrode choice and placement

An EEG is signal is most commonly measured as the potential difference over time between active and
reference electrodes. Electrodes be used in conjunction with conductive media such as conductive gel or
without and would be termed wet or dry electrodes in these two cases respectively.

Electrodes are most commonly arranged on the scalp according to the International 10-20 system standardised
by the American Electroencephalographic Society. An overview of this system is presented in Figure 2.1.

2.2.4 BCI control signals

The core role of a BCI is to interpret the intentions of a subject by making sense of their brain signals.
These signals are comprised of a superposition of many different neuronal potentials associated with various
mental tasks, most of which are not yet understood or clearly identifiable. However, there are some mental
processes that have proved to correspond to identifiable signals that can be decoded by BCIs. These signals
are either produced predictably in response to a particular external stimulus, or can be be modulated at will
by a subject with suitable conditioning [12]. Some of the most popular BCI control signals are discussed
below.

Visual evoked potentials

Visual evoked potentials (VEPs) are modulations in the activity of the brain’s visual cortex in response to
a visual stimulus [1]. VEPs can be characterised by the nature of the visual stimulus used to evoke them,
namely [12]:

• the flicker or reversal frequency of stimulus images or shapes

• the morphology of the stimuli

8

2.2. Electroencephalography

Figure 2.1: Diagram illustrating typical electrode placements using the international 10-20 system. A repre-
sents the ear lobe, C the central region, P the parietal, F the frontal and O the occipital. The naison and inion
are used as reference locations.

• the proportion of the visual field occupied by the stimulus

Most commonly, frequency is modulated between different visual stimuli in order to encode different control
targets. Transient VEPs, as the name suggests, are short-term potentials that occur in response to visual
stimuli below 6Hz. Conversely, steady state VEPs (SSVEPs) are produced at frequencies above 6Hz and are
characterised by sinusoidal signals with a fundamental frequency matching that of the visual stimulus [17].
VEPs have the advantage of a relatively high information transfer rate (ITR) and do not require any training
from the subject as they are elicited involuntarily. ITR is measured in bits/min and is a measure of how much
information can be communicated by a BCI per unit time. Higher ITRs are desirable as these correspond to
more responsive BCIs.

Slow cortical potentials

Slow cortical potentials (SCPs) are slow voltage shifts below 1Hz that correspond to changes in the level
of cortical activity [12]. Although these signals can be self-regulated in order to control external devices
through a BCI, reliable operation often requires training and is dependent on numerous external factors such
as a subject’s psychological state, motivation and social context [12]. Furthermore, as SCPs occur over several
seconds, maximum ITRs attainable are low.

Event related potentials

Event related potentials (ERPs), such as the P300 evoked potential, are positive signal spikes generated in
response to infrequent or unexpected auditory, visual or somatosensory stimuli [12]. ‘P300’ is derived from
the fact that these potentials are typically evoked around 300ms after observing an infrequent stimulus
after a sequence of common or expected ones. P300-based BCIs are only capable of very low ITRs since
considerable number of non-target stimuli need to be presented before the infrequent stimulus in order to
preserve its novelty. Furthermore, magnitude of P300 responses may decrease with time as the subject begins
to anticipate responses.

Sensorimotor rhythm

Sensorimotor rhythms, such as motor imagery, are modulations in cerebral activity associated with motor
tasks, even when overt motor action is not performed. BCI control can be achieved through sensorimotor
signals as subjects can be trained to generate modulations voluntarily through mental rehearsal of motor
actions. For example, a subject may imagine clenching their fists. However, obtaining reliable signals through
self-control proves difficult in practice as patients often imagine images of related movements which does not
produce sufficiently similar cerebral activity to the thought of performing the actual activity itself [12]. As
such, reliable BCI control usually requires special training with an emphasis on kinesthetic experiences.

9

2.3. Steady-state visual evoked potentials (SSVEP)

Paradigm Physiological phenomena Training required ITR (bits/min)

VEP Signal modulations in the visual cortex in response
to a flickering visual stimulus No 60-200

SCP Slow shifts in cortical potentials due to modulation
of cortical activity/concentration Yes 5-12

ERP Abrupt signal modulations in response to infrequent
or unexpected stimuli No 20-25

Sensorimotor Modulations in signals from the motor cortex
synchronised to imagined motor actions Yes 3-35

Table 2.2: A summary of commonly used BCI control signal paradigms. The information transfer rate (ITR)
values provided are typical but may vary depending on the type of data acquisition and decoding systems
used.

2.3 Steady-state visual evoked potentials (SSVEP)

Several studies suggest that steady-state visual evoked potentials [39], [28], [32] (SSVEPs) offer significant
potential for EEG decoding tasks similar to those in this project due to the high information transfer rate
(ITR), non-invasiveness and relatively high SNR that can be achieved using even basic BCI devices [37].
Moreover, SSVEP amplitudes change as a function of stimulus intensity (luminance and contrast) [26] which
can easily be controlled. Considering these factors and the fact that SSVEP-based BCIs require little to no
user training or prior BCI experience, it is clear that this is the most suitable EEG paradigm for this project.

2.3.1 Evoking and measuring SSVEPs

Broadly speaking, in order to evoke SSVEPs, flickering visual stimuli with frequencies of around 7-15Hz are
commonly used [32], [19], [27], however, Xie et al demonstrated successful decoding with 27.8Hz [17]. As in
[32], [19], [26], visual stimuli are usually presented using a computer monitor with an LCD display or discrete
LEDs [18]. SSVEPs are measured in the occipital, parietal or parieto-occipital regions [39] for proximity to
the visual cortex.

The aforementioned studies do not provide a unanimous set of parameters for the optimal SSVEP stimulus
configuration. There is substantial variation in the frequency, colour and source of stimulus used across these
studies and indeed, many other studies in the literature [27]. Duart et al in [27] sought to investigate these
stimulus design parameters more closely and compare their impact on accuracy of frequency discrimination
and SNR (signal-to-noise ratio) in SSVEP-based BCIs. Specifically, the following parameters were tested:

• frequency: low (5Hz), middle (12Hz) and high (30Hz) frequencies were tested.

• colour: red, white and green squares were experimented with.

• attention: a measure of attention was tested using to determine correlation with evoked responses.

Duart et al found that the middle frequency of 12Hz produced maximal SNR, followed by the low 5Hz
frequency. Furthermore, red and green stimuli produced responses with maximum SNR near 5Hz while red
and white were optimal at 12Hz. No difference in SNR was observed between colours at 30Hz. Despite red
light proving optimal in other studies such as [20], the authors note that red light may produce increased
risk of inducing epileptic seizures and should thus be avoided where possible. Moreover, Zhu et al noted
that lower (flicker) frequencies and light colours of longer wave length tend to produce greater visual fatigue
which consequently degrades SSVEP responses over time [7]. Finally, Duart et al measured attention of
subjects undergoing SSVEP trials through the Conner’s Continuous Performance Task version 2 (CPT-II)
which measures reaction times, omission errors and commission errors [27]. They found that this measure
of attention showed a significant correlation to the SNR of evoked SSVEP signals at low frequencies around
5Hz, but less so with higher frequencies. The authors hypothesised that this may be due to the fact that
greater concentration is required at lower frequencies that cause greater fatigue [27].

Taking into account these findings, it would appear that using stimulus frequencies of around 12Hz would
be a suitable choice. Furthermore, so as to avoid using red light, white would be a good choice in medium
frequency range and green would be suitable for lower frequencies around 5Hz. Using frequencies around
12Hz has the added advantage of causing less visual fatigue and theoretically, should require less active
concentration from subjects in order to achieve adequate SNR.

10

2.4. Computational Approaches for SSVEP Decoding

Electrode placement

As alluded to above, SSVEP signals are produced in the visual cortex located in the occipital region of the
brain. Accordingly, almost all studies of SSVEP decoding use electrodes in the occipital or parieto-occipital
regions [26], [32], [20], [20]. Referring to the 10-20 electrode positions in Figure 2.1, this corresponds to
electrodes in the Oz, O1, O2, POz, PO1 and PO2 positions. Some studies suggest that when few channels are
available, position Oz should be prioritised as it offers a relatively high density of SSVEP signals [26].

Sampling

In practical systems, there is almost always substantial 50Hz or 60Hz mains power interference. Therefore,
in order to satisfy the Nyquist criterion, sampling rate of at least fs > 100Hz (or 120Hz for regions with
60Hz) is required. In order to account for higher frequency components that are likely to be non-negligible
in measured EEG signals, most studies of BCI systems use sampling rates of 200Hz [29], 250Hz [15], 256Hz
[34], [16] or 500Hz [6], [27].

Another important consideration is the length of the recording window used to capture SSVEP signals. Most
commonly, sliding windows of fixed length T are used with some degree of overlap between successive
windows such that τn+1(0) − τn(0) < T where τn(0) marks the start time of window n. It is desirable to
minimise T since this affords a higher information transfer rate (ITR) which results in a more responsive
BCI. However, all studies mentioned in the previous paragraph indicate that SSVEP classification accuracy
improves with T. Thus, the question is more about determining the minimum window length T to achieve a
desired degree of average accuracy. This varies considerably based on the sophistication of the BCI hardware
and decoding algorithm, among other factors. Therefore, a suitable time window for this project should be
determined empirically. Based on somewhat comparable studies in [21], [20], [26], [11] and others, suitable
values of T are expected to be in the region of 1.5 to 3.5 seconds.

Presentation and arrangement of stimuli

The authors in [31] studied the effects of the arrangement of SSVEP stimuli on the decoding accuracy thereof.
As with many such studies, a series of four squares designed to flash at independent stimulus frequencies
were arranged on a contrasting background. The four different arrangements tested in [15] were adapted
for use in this project and are shown in Figure 2.2. The authors found that for recording windows of length
T > 3s, there was no significant difference in decoding performance among the different configurations.
However, it was noticed that for T < 3s, a spatial configuration most similar to (b) was optimal. Configuration
(a) was reported to be the most visually frustrating for subjects undergoing the experiment and less so for
the more dispersed configurations. Considering that, even for T < 3s, configuration (b) was only marginally
better, (c) may pose a good balance between decoding performance and user experience.

2.4 Computational Approaches for SSVEP Decoding

2.4.1 Power spectral density and frequency domain

Arguably the most obvious approach for analysing periodic signals in order to distinguish frequency content
is through the use of Fourier analysis. Power spectral density analysis (PSDA) is typically used to analyse
the power of a signal over a continuous frequency range. For a discrete time deterministic signal x[n] with
finite energy ∑∞

n=−∞ |x[n]|2 < ∞, the discrete time Fourier transform (DTFT) is defined as

X(ω) =
∞

∑
n=−∞

x[n]e−jωn (2.1)

for complex variable j and frequency variable ω with ω = 2π f . The energy spectral density Sx(ω) of x[n] is
defined as Sx(ω) = |X(ω)2|. The power spectral density (PSD) Px(ω) of x[n] of finite length N is defined as

Px(ω) = lim
N→∞

E

 1
N

∣∣∣∣∣N−1

∑
n=0

x[n]e−jnω

∣∣∣∣∣
2
 (2.2)

11

2.4. Computational Approaches for SSVEP Decoding

(a) (b)

(c) (d)

Figure 2.2: Experimental SSVEP stimulus grid configurations adapted from [31]. The absolute dimensions
and positions of the stimulus squares and the background are not important here; only their relative posi-
tioning is relevant

The PSD represents the distribution of signal power over a frequency range of interest. In practice, one can
only consider finite length signals with N < ∞ and so, Px(ω) must be estimated (albeit arbitrarily closely).
Such an estimate of power spectral density is called a periodogram.

In the context of SSVEP decoding, it is clear how PSDA could be useful. Simply by computing the peri-
odogram (estimated PSD) of a measured EEG signal x[n], the target SSVEP stimulus frequency f ∗ ∈ F could
be inferred from the set of candidate stimulus frequencies F by choosing f ∗ = argmax f∈F P̂ ′x(ω) where

P̂ ′x(ω) is the adjusted signal spectrum obtained by subtracting a baseline spectrum measured with no active
stimulus. This is necessary as EEG signals tend to follow a 1/ f power distribution whose magnitude natu-
rally decays with frequency. Therefore, without ”zeroing” the active spectrum, the lower, non-target stimulus
frequencies may have more power which could produce erroneous results.

Welch’s method for PSD estimation

Welch’s method is commonly used to reduce noise in PSD analysis. This approach involves dividing the
original signal into short overlapping windows of length N∗ ≤ N which are then windowed (in the time
domain). The periodograms of these windows are computed independently and then averaged. While this
approach reduces variance in the final periodogram, it comes at the cost of decreased frequency resolution.
Furthermore, the type of window used should be chosen carefully as this will further impact the resolution-
variance trade off. Hamming, Blackman and Bartlett windows are popular choices.

Efficacy of PSDA for SSVEP decoding

Many studies have demonstrated that PSDA can be used for SSVEP decoding/classification [31], [12], [32].
However, it is widely documented that PSDA is inferior to more specialised statistical techniques that have
been developed for this task: both in terms of signal classification accuracy and information transfer rate (ITR)
[26], [5], [35], [15], [8]. The authors in [8] performed a study specifically to compare the efficacy of PSDA vs
statistical algorithms such as CCA (explored below) in EEG signal decoding. Their findings reinforce those
of their colleagues in that CCA and its derivatives produce better decoding performance than PSDA.

12

2.4. Computational Approaches for SSVEP Decoding

2.4.2 Statistical

Canonical correlation analysis (CCA)

CCA is a standard multivariate statistical technique for analysing multiple variables measured on a set of
observations. In particular, variables are partitioned into two sets or views of the data [22]. Effectively, CCA
is a multivariate extension of ordinary correlation. Given variable partitions X ∈ Rm×p, Y ∈ Rm×q each with
m observations, CCA seeks to find a linear combination of X, Y that maximises the correlation between their
images zX = XwX and zY = YwY. These images are known as the canonical variables and wX and wY are the
canonical weight vectors that effectively act as spatial filters across signal channels.

With CCA for SSVEP frequency recognition tasks, X ∈ RNs×Nc is the set of measured EEG signals from Nc
channels over Ns observations. The measured signals in X must be compared with each frequency fk ∈ F ,
a finite set of candidate stimulus frequencies. CCA can be used to compute weighted correlations between
the measured signals and each candidate frequency fk by constructing a sinusoidal reference signal set Yk ∈
RNs×2Nh as follows:

Yk =

sin (2π fkt)
cos (2π fkt)
sin (4π fkt)
cos (4π fkt)

...
sin (2πNh fkt)
cos (2πNh fkt)

, t =

1
fs

,
2
fs

, . . . ,
Ns

fs
(2.3)

where fs is the sampling frequency and Nh is the number of harmonics in the reference set, a parameter to be
chosen. Since the scalp and other interacting layers between the brain and surface electrodes exhibit low-pass
filter dynamics [2], [5], it is rare that more than Nh = 5 harmonics are selected in the reference signal set, and
most commonly Nh = 3 is chosen [5]. The final task of frequency recognition is performed by selecting the
frequency f ∗

f ∗ = argmax
fk∈F

ρk (2.4)

corresponding to the candidate frequency fk which maximises the canonical correlation ρk between X and the
the reference set Yk. While standard CCA is a good starting point for statistical SSVEP decoding as it forms
the basis of many similar algorithms, there are several extensions which have been shown to significantly
improve signal recognition performance [15], [35], [34]. The most promising of these are explored below.

Task-related component analysis (TRCA)

Task-related component analysis (TRCA) as a decoding technique in biophysical systems was introduced in
the seminal paper by Tanaka et al [13]. TRCA seeks to extract task-related signal components (as opposed
to spurious, unwanted components such as EMG artefacts and background noise) by identifying compo-
nents that lead to maximum reproducibility across trials. Task-related components are constructed as linear
combinations of signals recorded across multiple time blocks (trials) and their weights are optimised so as
to maximise their inter-block correlation or covariance [13]. Components with maximum inter-block covari-
ance and thus, reproducibility or consistency, are identified as task-related components (subject to certain
significance measures as discussed later). Further advantages of TRCA are that, unlike other more common
generalised linear models (GLMs), it assumes no a priori knowledge of source signals and is not sensitive
to autocorrelation [13]. It also offers concrete measures of task-relatedness unlike some other data-driven
methods like independent component analysis.

To illustrate the basic idea of this algorithm, [13] presents a useful toy example. Consider a task-related signal
s(t) standardised to have zero mean and unit variance embedded in additive white (uncorrelated) noise n(t):
x(t) = a1s(t) + a2n(t) with some mixing scalars ai ∈ R. Then, assume the observable signal x(t) is measured
over two distinct time blocks or trials to yield x1(t) and x2(t). A linear model of the two observed blocks
could be defined as follows:

x1(t) = a11s(t) + a12n(t) (2.5)
x2(t) = a21s(t) + a22n(t) (2.6)

13

2.5. Existing BCI Technology

As mentioned above, TRCA attempts to recover task related components (only s(t) in this case) from a linear
combination of observations across trials. Defining this weighted sum as y(t) with

y(t) = y1(t) + y2(t) = w1x1(t) + w2x2(t) = (w1a11 + w2a21) s(t) + (w1a12 + w2a22) n(t) (2.7)

Recovering s(t) involves maximising the covariance between y1(t) and y2(t):

Cov (y1, y2) = (w1a11 + w2a21)
2 Cov (s1, s2) + (w1a12 + w2a22)

2 Cov (n1, n2)

+ (w1a11 + w2a21) (w1a12 + w2a22) [Cov (s2, n2) +Cov (n1, s2)]
(2.8)

= (w1a11 + w2a21)
2 Cov (s1, s2)

Since Cov(n1, n2) = Cov(s1, n2) = Cov(n1, s2) = 0. In order to bound this quadratic objective, we choose the
weights w1, w2 so that the variance of y is constrained to 1:

var(y) = (w1a11 + w2a21)
2 + (w1a12 + w2a22)

2 = 1 (2.9)

where s(t) and n(t) are also assumed to be uncorrelated ∀t. The solution of this constrained optimisation
problem is

w1a11 + w2a21 = 1, w1a12 + w2a22 = 0, (2.10)

which, barring the unlikely case that a11a22 = a12a21, yields y(t) = s(t) as desired. This demonstrates how
inter-trial covariance maximisation can be used for recovery of task-related signals.

Although TRCA has been shown to outperform CCA [33], [34], [35], extended and hybrid forms of these
algorithms have produced superior results. Some of these extensions are explored below.

Multiset canonical correlation analysis (MsetCCA)

MsetCCA is one extension of standard CCA that takes into account historical data instead of performing
inference purely on new observations. Zhang et al propose that this is one of the reasons that standard CCA
performs poorly on short time windows; it effectively over fits to localised dynamics [15]. Furthermore, the
authors suggest that exclusively using the pre-constructed sinusoidal reference set is not optimal since this
artificial reference does not include other features from real EEG data [15]. To circumvent this, MsetCCA
seeks to optimise the reference signals used in the CCA algorithm by learning multiple linear transforms
to maximise overall correlation between canonical variables over many sets of EEG data at each candidate
frequency fk ∈ F [15]. This optimisation effectively finds optimal joint spatial filters w1, . . . , wNt (over Nt
trials) using only historical observations (‘training’ data). The authors claim that MsetCCA outperforms
similar techniques, especially in cases with few channels and short time windows.

Generalised canonical correlation analysis (GCCA)

Wong et al noted in their study of EEG spatial filtering methods in [30] that using historical observations to
estimate spatial filters (canonical weights) wi can be combined with harmonic reference signals as in ordinary
CCA. Combining these techniques was found to enhance the algorithm’s robustness and reduced calibration
requirements [30]. Motivated by this, the authors in [35] developed a new algorithm called generalised CCA
(GCCA) that aims to simultaneously maximise correlation between three sets of data: historical observations,
measured signals in a new sample and the pre-constructed harmonic reference. As interpreted by the authors
in [35], the optimal spatial filters obtained through GCCA perform SSVEP signal denoising.

2.5 Existing BCI Technology

Commercial BCI devices are currently available from several manufacturers, including but not limited to:
B-Alert X10, NeuroSky, Emotiv and OpenBCI. These devices are typically targeted at consumers but some
are also aimed at research applications (such as the Emotiv Epoc Flex). This review will not explore these

14

2.5. Existing BCI Technology

devices further as they are all priced in excess of several hundred USD which violates the important budget
constraint on this project.

More of interest to this project is the low-cost, lightweight BCI devices being developed in the EEG research
community. Several studies have presented promising BCI prototypes that have demonstrated that reliable
EEG signal decoding is possible in significantly resource-constrained settings [21], [14], [11], [18], [25]. In
particular, these studies have explored devices that are constrained in terms of computing capacity, mobility
or form factor, number of channels available and cost.

However, a thorough review of these existing BCI prototypes did not reveal any that satisfied all constraints
or requirements of this project. Uktveris et al demonstrated a very promising and impressive device with
wireless capabilities (communication with a host PC or other device using Bluetooth Low Energy (BLE)
and/or Wi-Fi) and some on-device digital signal processing ability [21]. However, their device requires final
signal decoding to be performed on a host device separate from the actual BCI itself. Furthermore, the cost
of the raw materials in their project was around 113 EUR [21] (albeit for a more capable multi-channel BCI
system).

The authors in [18] created an embedded BCI system consisting of a small, on-board analogue sampling
device that communicates using RF signals with another external main controller. The authors claim this to
be a ‘wireless’ BCI but in fact, all computation and decoding happens on the fixed main controller and the
on-board controller only serves to acquire the raw signals.

Acampora et al provide a slightly more feasible prototype in [32] and provide an expansion for SSVEP
decoding using this device in [25]. This device was able to achieve maximum SSVEP classification accuracy
of 74.5% for a 2s recording window, and up to 92.7% over a 4s window (using a support vector machine
with Gaussian or RBF kernel) [25]. However, this prototype utilises an off-the-shell Olimex EEG-SMT device
for signal acquisition and a Raspberry Pi 3 for computation and decoding. While their device is seemingly
effective and fairly mobile, it would certainly not satisfy the £20 price budget in this project. Housing a
Raspberry Pi 3 and battery pack along with the rest of the BCI hardware would also be overly cumbersome
for this project.

15

Chapter 3

Theory Development

3.1 Eigenvalue Optimisation

Many, if not all, of the statistical decoding algorithms mentioned so far require a form of eigenvalue opti-
misation to find a solution. Worded differently, these are optimisation problems that can be conveniently
reformulated as eigenvalue problems.

3.1.1 Optimisation form I

The first form, which arises in the CCA algorithm, addresses constrained optimisation problems of the form

maximize
w

w>Aw

subject to w>w = 1,
(3.1)

with variable w ∈ Rd and A ∈ Rd×d. Employing Lagrange dual theory, the Lagrangian for (3.1) is

L = w>Aw− λ
(

w>w− 1
)

, (3.2)

with Lagrange multiplier λ ∈ R [23]. Referencing the Karush-Kuhn-Tucker (KKT) conditions, stationary
requires ∂L

∂w = 0:

Rd 3 ∂L
∂w

= 2Aw− 2λw set
= 0 =⇒ Aw = λw, (3.3)

yielding the standard eigenvalue problem in A. Since (3.1) was posed as a maximisation problem, the optimal
w corresponds to the largest eigenvalue in A. For a minimisation problem, it would correspond to the smallest
eigenvalue.

3.1.2 Optimisation form II

The second form is an extension of the prior univariate case to a multivariable system W ∈ Rd×d. Consider
the following constrained optimisation problem:

maximize
W

tr
(

W>AW
)

subject to W>W = I ,
(3.4)

where tr(.) represents the matrix trace and A ∈ Rd×d. The Lagrangian for this problem, taken from [23], is
the following:

L = tr(W>AW)− tr(Λ>(W>W− I)), (3.5)

16

3.1. Eigenvalue Optimisation

where Λ ∈ Rd×d is a diagonal matrix whose diagonal entries are the Lagrangian multipliers. Once again,
applying the stationarity condition, (3.4) can be reformulated to the following eigenvalue problem [23]:

Rd×d 3 ∂L
∂W

= 2AW− 2WΛ set
= 0 (3.6)

=⇒ AW = WΛ (3.7)

The diagonal elements of Λ are the eigenvalues of A and are arranged in descending order for the maximisa-
tion problem and ascending order for the minimisation problem. The columns of W are the corresponding
eigenvectors.

3.1.3 Power iteration

The power iteration algorithm is a simple iterative algorithm used to find the eigenvector q1 ∈ Rd correspond-
ing to the largest eigenvalue of a matrix A ∈ Rd×d [9]. It relies on the property that if q is an eigenvector of
matrix A with eigenvalue λ, then Akq = λkq, k ∈ N. Let unit vector v(0) ∈ Rd be the initial estimate of an
eigenvector of A. Assuming that A is full rank with real eigenvalues, its eigenvectors qi are orthogonal and
form a basis for Rd. Therefore, v(0) can be expressed as a linear combination of qi:

v(0) =
d

∑
i=1

ciqi for ci ∈ R, ∀i (3.8)

Assuming that c1 6= 0:

Av(0) =
d

∑
i=1

ciλiqi =⇒ Akv(0) =
d

∑
i=1

ciλ
k
i qi (3.9)

Then, taking λk
1 as a common factor,

Akv(0) = λk
1

(
c1q1 + c2

(
λ2

λ1

)k
q2 + . . . + cn

(
λn

λ1

)k
qn

)
(3.10)

Assuming that the eigenvalues λi are assumed to be real, distinct and descending in magnitude, it is clear to
see that for i = 2, . . . , d,

lim
k→∞

(
λi
λ1

)k
= 0 (3.11)

Thus, over multiple iterations (increasing k), Av(0) → c1λk
1q1 and v(k) approaches the eigenvector q1:

q1 ≈
Av(0)

‖Av(0)‖
(3.12)

An approximation of the eigenvalue corresponding to q1 can be found using the Rayleigh quotient for v(k)

defined as

r(v) =
v>Av
v>v

≈ λv>v
v>v

= λ, (3.13)

where the iteration index k has been omitted for readability. Although elegant, this algorithm is limited in
that it only returns a single eigenvector and only converges if eigenvalues λ1, λ2, . . . are distinct. However,
for problems that only require solving of the largest eigenvalue/eigenvector, this is a useful algorithm that is
easy to implement.

17

3.2. SSVEP Decoding Algorithms

3.1.4 Simultaneous iteration

The power iteration algorithm, along with its extensions such as the inverse power iteration and Rayleigh
Quotient iteration algorithms, only compute a single eigenvector/eigenvalue at a time. In order to compute
several eigenvalues, these methods must be reapplied several times [9]. Simultaneous iteration offers a
method of solving all eigenvalues at once.

As in (3.8) in the power iteration algorithm, only non-trivial eigenvectors in the linear sum with ci 6= 0
can be found by the algorithm. Equivalently, only eigenvectors not orthogonal to v(0) can be selected by the
algorithm. This suggests that if different, mutually-orthogonal initial vectors v(0) are selected across runs,
there is a chance of finding different eigenvalues [9]. Using this idea, instead of beginning with v(0), consider
an initial basis of d linearly independent vectors arranged as the columns of a matrix V(0):

V =
[

v(0)
1 . . . v(0)

d

]
(3.14)

If we let
V(k) = A(k)V(0) =

[
v(k)

1 . . . v(k)
d

]
, (3.15)

the standard power iteration is effectively applied to all the vectors v(0)
1 , . . . , v(0)

d at once [9]. However, in
order to actually extract different eigenvectors from the set of distinct initial vectors (columns of V), we
must orthonormalise the columns of V(k) at each iteration. This is done in the univariate version of the
power iteration algorithm; the multivariate analogue is to ensure the set of eigenvector estimates (columns
of V(k) are orthonormal in each iteration [9]. This is achieved by using the QR decomposition of V(k) which
decomposes a matrix into the product of an orthonormal matrix Q and an upper triangular matrix R. In
each iteration, a new matrix W is obtained by multiplying A by the latest eigenvector approximation matrix
V(k−1). W is updated to the orthonormal columns of Q(k) from the QR decomposition of W(k−1).

3.1.5 QR iteration algorithm

While the simultaneous iteration is effective under some conditions, it is not commonly used in practice [9].
The QR algorithm is a subtle yet elegant adjustment: in each iteration, A is modified directly. Specifically,
factor matrices Q and R from the QR decomposition of A(k−1) are simply multiplied in reverse order to obtain
A(k) = R(k)Q(k). The motivation behind this is not immediately obvious or intuitive but can be explained
through a restructuring of the simultaneous iteration algorithm as detailed at length in [9].

It should be noted that both the simultaneous iteration and QR iteration algorithms may fail if the eigenvalues
of A are not real or if the eigenvectors thereof do not form a basis for Rd.

3.2 SSVEP Decoding Algorithms

As mentioned in Section 2.4.1, statistical algorithms selected or designed for SSVEP decoding have proven to
be significantly more successful than PSDA approaches. Therefore, only the former will be explored in this
section.

3.2.1 Canonical correlation analysis (CCA)

Given variable partitions X ∈ Rm×p, Y ∈ Rm×q each with m observations, CCA seeks to find a linear
combination of X, Y that maximises the correlation between their images. More formally, assuming that
the variables (columns) of the two partitions x1, . . . , xp ∈ Rm and y1, . . . , yq ∈ Rm are standardised to have
zero mean and unit variance, find

ρ = max
wX ,wY

corr(XwX , YwY) (3.16)

= max
wX ,wY

E[XwXw>Y Y>]√
E[XwXw>X X>]E[YwYw>Y Y>]

(3.17)

18

3.2. SSVEP Decoding Algorithms

where ρ is the canonical correlation, wX and wY are the canonical weight vectors and the images zX = XwX
and zY = YwY are the canonical variables for X and Y respectively.

Geometric interpretation

The authors in [22] present an intuitive geometric analogy. Consider X and Y as linear transforms of position
vectors wX and wY onto their images zX and zY in Rm. CCA constrains zX and zY to have unit norm and that
the angle θ ∈ [0, π

2] between them be minimised so as to maximise their correlation. The canonical correlation
ρ is then the inner product of zX and zY:

ρ = z>X zY = ‖zX‖‖zY‖ cos(θ) = cos(θ) (3.18)

Therefore, CCA aims to find position vectors wX , wY that, after undergoing linear transforms X and Y, are
mapped to a unit sphere in Rm where θ is minimised [22]. Note that there will be n = min(p, q) canonical
correlations ρ1, . . . , ρn with |ρi| ≥ |ρj|, ∀ i < j. Typically, only the first and largest canonical correlation ρ1 is
considered.

Solving for canonical weight vectors through the eigenvalue problem

Consider the case of solving for the first and largest canonical correlation p1. Following the geometric
interpretation, the objective is to find

cos(θ1) = max
wX ,wY

〈 zX , zY〉 with ‖zX‖ = ‖zY‖ = 1 (3.19)

where θ1 is the smallest angle between image vectors. Defining the within-set covariance matrices as

CXX = X>X and CYY = Y>Y (3.20)

and the inter-set cross covariance matrix as

CXY = X>Y, (3.21)

the unit variance constraint on the image vectors can be rewritten as

‖zX‖ = z>X zX = w>X X>XwX = w>X CXXwX = 1

‖zY‖ = z>Y zY = w>Y Y>YwY = w>Y CYYwY = 1
(3.22)

Substituting (3.22) into (3.17) yields

cos(θ) = max
wX ,wY

w>X CXYwY (3.23)

Lagrangian dual theory provides a straight forward way to solve the constrained optimisation problem above
with unit variance constraints as in (3.22). Consider the Lagrangian for this problem below with Lagrange
multipliers λ1 and λ2:

L(wX , wY, λ1, λ2) = w>X CXYwY −
λ1

2
(w>X CXXwX − 1)− λ2

2
(w>Y CYYwY − 1) (3.24)

19

3.2. SSVEP Decoding Algorithms

With reference to the KKT conditions, stationary requires

∂L
∂wX

= CXYwY − λ1CXXwX = 0 (3.25)

∂L
∂wY

= CYXwX − λ2CYYwY = 0 (3.26)

Since CYX = C>XY. Pre-multiplying (3.25) by w>X and (3.26) by w>Y yields:

w>X CXYwY − λ1w>X CXXwX = 0

w>Y CYXwX − λ2w>Y CYYwY = 0
(3.27)

Since w>X CXXwX = w>Y CYYwY = 1, it is clear from (3.27) that λ1 = λ2 = λ. Substituting this result into (3.25)
yields

wX =
C−1

XXCXYwY

λ
(3.28)

Then, substituting into (3.26) produces the following generalised eigenvalue problem:

CYXC−1
XXCXYwY = λ2CYYwY (3.29)

If CYY is non-singular, this reduces to a standard eigenvalue problem of the form

C−1
YYCYXC−1

XXCXYwY = λ2wY (3.30)

The eigenvalues of the matrix C−1
YYCYXC−1

XXCXY correspond to the squares of the canonical correlations
ρ1, . . . , ρn.

3.2.2 Task-related component analysis (TRCA)

Expanding from the toy example in Section 2.4.2, the TRCA algorithm implicitly assumes that observed
signals are generated as a linear combination of task-related and task-unrelated components which implies
that task-related components can be recovered by applying an appropriate weighting of observed signals
across trials [13]. Inter-trial covariance maximisation is the core objective that aims to extract task-related
components with maximal temporal similarity across trials.

Now that multiple trials are to be considered, the signal matrix X ∈ RNs×Nc introduced in Section 3.2.1 must
be extended to a third order signal tensor X ∈ RNs×Nc×Nt with Nt trials, each with Nc channels1 and Ns

samples. Let y(k) be the k-th trial (block) with k ∈ {1, 2, . . . , Nt} of the signal y(t) and x(k)i be the k-th trial of
the input signal from channel i, i ∈ {1, . . . , Nc}. Consider the covariance between all i channels for two trials
k and l:

Ĉkl = Cov
(

y(k), y(l)
)
=

Nc

∑
i, j=1

wiwj Cov
(

x(k)i , x(l)k

)
(3.31)

1the constraint that the number of variables (width of Xi) for each trial be constant is not strictly necessary. For this application,
however, it is assumed that the number of channels will not change between trials of a given experiment.

20

3.2. SSVEP Decoding Algorithms

Furthermore, as with CCA, we must impose the constraint on the designed weights such that the variance of
y(t) is bounded:

Var(y) =
Nc

∑
i, j=1

wiwj Cov
(
xi, xj

)
= wTQw = 1 (3.32)

Then, all possible combinations of trials 1, . . . , Nt are summed as

Nt

∑
k, l=1,

k 6=l

Ĉkl =
Nt

∑
k, l=1,

k 6=l

Cov
(

y(k), y(l)
)

=
Nt

∑
k, l=1,

k 6=l

Nc

∑
i,j=1

wiwj Cov
(

x(k)i , x(l)j

)
= w>Sw

(3.33)

where S is the following symmetric matrix

Si,j =
Nt

∑
k, l=1,

k 6=l

Cov
(

x(k)i , x(l)j

)
(3.34)

As alluded to before, (3.33) yields the sum of covariances of all combinations of trials: a measure of task
consistency. This is precisely what we want to maximise. This constrained optimisation problem (recalling
the variance constraint on y(t)) can be reformulated as a Rayleigh-Ritz eigenvalue problem of the form

w∗ = arg max
w

w>Sw
w>Qw

(3.35)

The inter-trial weight vectors wk, k ∈ {1, . . . , Nt} can be found by computing the eigenvectors of Q−1S.
Specifically, the degree of task-relatedness corresponds to the magnitude of the eigenvalues of Q−1S and so
the optimal weight w∗ corresponds to the largest eigenvalue.

3.2.3 Multiset CCA (MsetCCA)

MsetCCA is an extension of standard CCA to multiple data sets or partitions. Accordingly, the objective
is now to maximise the correlation between canonical variables from many sets of observations at a given
stimulus frequency fk. Although several objective functions for MsetCCA exist, the MAXVAR objective is
explored in [15] for its intuitive extension to ordinary CCA with multiple variable sets. Assuming all sets of
variables in X are normalised to have zero mean and unit variance, the MAXVAR objective for maximising
correlation over canonical variables from multiple sets at a given candidate frequency fk is defined as follows:

max
w1,...,wNt

ρ =
Nt

∑
i 6=j

w>i X>i Xjwj

s.t.
1

Nt

Nt

∑
i=1

w>i X>i Xiwi = 1,

(3.36)

where the same conventions for the signal tensor X as in Section 3.2.2 above apply. Following a similar
approach as in the derivation for CCA above, the method of Lagrange multipliers can be used to transform
the constrained optimisation problem in (3.36) to a generalised eigenvalue problem of the form:

(R− S)w = ρSw (3.37)

21

3.2. SSVEP Decoding Algorithms

where

R =

X>1 X1 . . . X>1 XNt
...

. . .
...

X>Nt
X1 . . . X>Nt

XNt

 , S =

X>1 X1 . . . 0
...

. . .
...

0 . . . X>Nt
XNt

 and w =

 w1
...

wNt

Thus, R is the inter-trial block covariance matrix which captures sub-covariance matrices between all pairs of
trials n ∈ {1, . . . , Nt}. S is a block diagonal matrix which captures within-set covariance matrices for each trial.
w is a matrix of optimal spatial filters (vectors) w1, . . . , wNt resulting from the largest combined canonical
correlation between all canonical variables zi = Xiwi ∈ RNs , ∀ i ∈ [1, Nt]. As with standard CCA, the largest
canonical correlation ρ∗ corresponds to the largest generalised eigenvalue in (3.37). The canonical variables
zi corresponding to ρ∗ are indeed the eigenvectors corresponding to the largest generalised eigenvalue [15].
The optimal reference Yk ∈ RNs×Nt for given frequency fk can be computed using the spatial filters from w
as:

Yk =
[
z1, k . . . zNt , k

]
=
[
X1, kw1, k . . . XNt , kwNt , k

]
(3.38)

After this training or calibration process is complete and Yk is computed for all candidate frequencies fk,
these optimised reference sets can be used for inference. Given a new set of test signals X̂ ∈ RNs×Nc , ordinary
CCA as in Section 3.2.1 can be used to discern the frequency f ∗ corresponding to the highest canonical
correlation between X̂ and the associated referenced set Y∗. The process for finding f ∗ is identical to that in
(2.4). The important difference here is how the pre-computed reference sets Yk used in the CCA algorithm
are calculated.

3.2.4 Generalised CCA (GCCA)

Consider a single candidate frequency fk: for the rest of this subsection, the k index is ommitted for brevity
but all symbols refer to those specific to the single set of trials for a distinct stimulus frequency fk. As with
MsetCCA, GCCA requires a signal tensor X ∈ RNs×Nc×Nt that incorporates several trials. The template matrix
X is obtained by computing the arithmetic mean of all trials in the set: X = 1

Nt
∑Nt

i=1 X i. The concatenated
signal matrix Xc is formed by unrolling X along the third (trial) axis:

Xc =
[
X>1 X>2 . . . X>Nt

]
∈ RNc×(Ns Nt) (3.39)

Then, the template and sinusoidal reference matrices are concatenated similarly to match the dimensions of
Xc:

Xc
=
[
X> X> . . . X>

]
∈ RNc×(Ns Nt) and Yc =

[
Y> Y> . . . Y>

]
∈ R2Nh×(Ns Nt) (3.40)

where Y follows the definition of the sinusoidal reference in (2.3). Consider the augmented spatial filter
vector w̃:

w̃ =
[
wXc wXc wYc

]> , (3.41)

where, for example, component weight wXc corresponds to concatenated signal matrix Xc, and so on. Simi-
larly, the augmented signal matrix X̃ is defined as:

X̃ =
[
(Xc)> (Xc

)> (Yc)>
]>

(3.42)

22

3.2. SSVEP Decoding Algorithms

The objective of GCCA can then be expressed as

maximise tr(w̃>X̃X̃
>

w̃)

s.t. w̃>Dw̃ = I
(3.43)

where D, the within-set block covariance matrix, is defined as

D =

Xc(Xc)> 0 0
0 Xc

(Xc
)> 0

0 0 Yc(Yc)>

 (3.44)

Again, using the method of Lagrange multipliers, (3.43) can be reformulated as a generalised eigenvalue
problem of the form

X̃X̃
>

w̃ = λDw̃ (3.45)

If D is non-singular, (3.45) resolves to an ordinary eigenvalue problem:

D−1X̃X̃
>

w̃ = λw̃ (3.46)

Then, the eigenvector of D−1X̃X̃
>

corresponding to its largest eigenvalue is the optimal spatial filter w∗ ∈
R2(Nc+Nh).

Given a new test sample set X̂ ∈ RNs×Nc , two correlations are computed: first between the test data and the
historical template, and then between the test data and sinusoidal reference. This can be expressed as

ρ1 = corr(X̂wXc , XwXc) (3.47)

ρ2 = corr(X̂wXc , YwYc) (3.48)

where corr(.) denotes Pearson correlation. Finally, the output correlation for frequency fk is computed as a
combination of ρ1 and ρ2:

ρ = sign(ρ1)ρ
2
1 + sign(ρ2)ρ

2
2 (3.49)

23

Chapter 4

Apparatus and Experimental Procedure

4.1 BCI Apparatus

In general, EEG-based BCI systems are comprised of the following core elements [3], [12]:

• electrodes: placed on the scalp of the subject to record raw electrical potentials.

• signal processing elements: amplifiers and filters are typically employed before the signals are digitised

• analogue-to-digital converter (ADC): digitises measured signal for manipulation in a computer or mi-
crocontroller

• computer or microcontroller: facilitates data processing, computation and storage

4.1.1 OpenBCI Ganglion

As the Imperial NGNI hardware prototype was still under development for a large part of this project,
experimentation was initially done on a Ganglion bio-sensing kit made by OpenBCI (OpenBCI, New York,
USA). This kit was chosen due to the fact that it is relatively low-cost at 374.99 USD, open-source and has
been scientifically validated as in [26], [29]. Furthermore, it is a relatively simple platform with sensing
capabilities that are likely the most comparable to those anticipated for the NGNI prototype.

As depicted in Figure 4.1, the Ganglion board offers four active channels. All four channels were using during
experimentation as it was more convenient to exclude data from certain channels in post-processing than only

(a) OpenBCI Ganglion board, electrodes and ad-
justable Velcro headband

(b) Close-up view of the 4 active electrodes and two
reference electrode clips (bottom)

Figure 4.1: Images of the OpenBCI Ganglion bio-sensing device and electrodes. The two black clips are the
reference electrodes and the four active channels are received through the coloured wires.

24

https://shop.openbci.com/products/ganglion-board?variant=13461804483

4.1. BCI Apparatus

measuring a subset of channels. Although wet electrodes can also be used with this kit, in accordance with
the project constraints mentioned in Chapter 1, dry electrodes were used. As seen in Figure 4.1a, the four
active electrodes have spiky nodules to increase surface pressure and thus improve contact quality with the
scalp. For reference and comparison, some core features of the Ganglion board are provided below:

• Microchip MCP3912 four channel 24-bit Delta-Sigma analogue frontend

• 200Hz sampling rate

• Simblee Bluetooth 4.0 module

4.1.2 NGNI Prototype I

As alluded to in Chapter 1, the hardware to be used in this project was supplied by the Imperial NGNI Lab.
All hardware prototypes developed by the Lab were based on the Espressif ESP32; a low-cost, low-power
SoC (system-on-chip) based on the Tensilica Xtensa LX6 microprocessor with integrated Wi-Fi and Bluetooth.
Features of the ESP32 that are relevant to this project include [38]:

• dual-core, 240MHz CPU

• onboard FPU

• 12-bit successive-approximation (SAR) ADC

• 4x SPI, 2x I2C, 3x UART interfaces

• up to 600 DMIPS performance

• ultra low-power (ULP) co-processor

• 4 MiB SRAM

• integrated Wi-Fi 802.11 b/g/n and BLE

The ESP32 is extremely capable for its low price tag of around 3.6 USD [38]. Its dual-core CPU is also
particularly attractive as it could allow decoding-related computation and network communication to happen
concurrently.

Figure 4.2 shows the electronic hardware prototype developed by the NGNI Lab. In this design, the ac-
tive components directly involved in the normal functioning of the system are independently located on
a ‘target’ board. A second programmer board was created to enable serial communication with the target;
most commonly in order to flash new firmware to it during development. The programmer board uses six
spring-loaded pogo pins to make momentary contact with corresponding pads on the target board during
development. These 6 pins, and their corresponding pads on the target board, can be seen directly in the
centre of Figure 4.2c. A 3D printed housing was created to facilitate correct contact between the boards dur-
ing development. As depicted in the image of the programmer board in Figure 4.2b, it also features contact
points for probing a few selected pins/junctions on the target board such as: the ADC output, the output of
the instrumentation amplifier, the output of the analogue filter and all relevant supply voltage references. In
addition, two momentary push-buttons connected to the BOOT0 and EN pins of the ESP32 SoC are included
in order to allow hardware resets and to control the entry state upon reset: bootloader mode or normal
operating mode.

Analogue signal processing system

Figure 4.3 provides an overview of the key analogue signal processing elements in the electronic hardware
prototype. This system is primarily responsible for amplifying µV-scale raw EEG signals, filtering out 50Hz
mains power interference and offering further amplification that can be adjusted in firmware.

Important details of the components shown in Figure 4.3 are provided below:

(a) differential instrumentation amplifier

• fixed gain of 1120

• high-pass filter dynamics: highest corner frequency fc = 0.48Hz

(b) hourglass low-pass filter

• Q factor 2.17

• low-pass corner frequency fc = 37.4Hz

25

4.1. BCI Apparatus

(a) Target board with ESP32 SoC and
peripheral electronics

(b) Programmer board with serial-to-
USB interface

(c) Bottom side of the programmer
board (left) and target board

Figure 4.2: Images of the electronic hardware prototype developed in the Imperial NGNI Lab. This prototype
includes the target board with ESP32 SoC, as well as a programmer board that is used to flash new firmware
on to the microcontroller aboard the target board. The orange 3D-printed housing is used to position the
programmer board above the target during firmware updates or other serial communication with an external
computer.

vn

vp

vref

+

_
(a)

(b)
(c)

ADC

ESP32

Figure 4.3: Functional overview diagram of the analogue signal processing system in the NGNI electronic
hardware prototype. (a) signals captured from the two active electrodes, vn and vp, first pass through a
differential instrumentation amplifier. (b) a third order hour glass low-pass filter is used for 50Hz mains
power rejection. (c) the filtered signal can be further amplified with adjustable gain that is controlled via a
digital potentiometer through a SPI interface.

• notch frequency fn = 50Hz

• 50Hz rejection characteristics: minimum 17dB, nominal 35dB and maximum 55dB.

(c) adjustable-gain output amplifier

• adjustable gain between 1.745 and 19.2

• input low-pass filter dynamics: corner frequency of fc = 36.35Hz

Important to note is that the analogue hourglass filter designed for 50Hz rejection has a corner frequency of
fc = 37.4Hz. Therefore, EEG signals with harmonics beyond 37.4Hz will start to become attenuated as a side-
effect of the dynamics of this filter. Furthermore, as mentioned in Section 2.2.2, raw EEG signals are expected
to be in the range of 0.5 to 100µV peak-to-peak. Neglecting other minor sources of gain or attenuation in
the system, the ranges of signal amplitudes (peak-to-peak voltages) at the output of the system for various
input EEG signal amplitudes and gain configurations is shown in Table 4.1. Note that, with the minimum
gain configuration of g2 = 1.745 on the output amplifier, the maximum expected output voltage is only
vout = 0.132V which is approximately equal to the full range of amplitudes expected with this configuration.

It should be noted that this first revision of the electronic hardware prototype is designed for coupling with
two active electrodes but only allows for differential signal measurements between these electrodes. Conse-
quently, only a single ‘channel’ is recorded by the ADC in the ESP32. A third reference electrode is also
expected in order to offer a common voltage reference point between the two active channels.

26

4.1. BCI Apparatus

vin (µV) g1 g2 g1g2 vout (V)

0.5 1120 1.745 1315.4 0.000658
0.5 1120 19.2 21504 0.0108
100 1120 1.745 1315.4 0.132
100 1120 19.2 21504 2.15

Table 4.1: Table showing the theoretical range of voltages vout at the input to the ADC of the ESP32 (output
of the analogue signal processing system) with varying input signal amplitude vin and gain configurations.
Fixed gain g1 is that of the input stage differential amplifier and g2 is the adjustable gain of the output
amplifier. The expected EEG signal amplitude range, vin, is from [3]. Voltages shown are peak-to-peak
amplitudes.

Figure 4.4: The first very rudimentary prototype EEG band developed by the NGNI Lab based on the elec-
tronic hardware prototype in Figure 4.2. The active electrodes are those at the two extremes of the band and
the middle one is a reference electrode.

Mechanical hardware prototype

The very first complete EEG headband prototype comprising electronic and mechanical hardware is shown
in Figure 4.4. This version did not include any means of adjusting the circumference of the band of the
electrode positions within it besides having to drill new holes in it. As such, this makeshift prototype was
more intended to serve as a preliminary means of gathering real-life data using the electronic hardware. It
was not designed (nor expected) to produce viable results for SSVEP decoding.

4.1.3 NGNI Prototype II

Guided by the first EEG headband prototype, a second, improved version was developed by the NGNI Lab.
This version, pictured in Figure 4.5, employed a flexible and adjustable strap mechanism. This enabled the
band circumference to be adjusted so as to offer greater comfort for the user and ensure appropriate contact
pressure with heads of any size or morphology. Furthermore, electrodes could be adjusted more easily thanks
to the 3D-printed locator structures in which they were housed. These locator structures, seen in Figure 4.5b,
allowed for greatly improved contact angles between the electrodes and the scalp surface compared to the
first prototype. In particular, the slight pitch and yaw flexibility introduced by the electrode locators allowed
the electrodes to remain perpendicular to the undulating scalp surface, thereby maximising contact surface

27

4.2. Experimental Procedure

(a) View of the 3D-printed headband housing and ad-
justable elastic strap. The electronic hardware is externally
powered by two 1.5V AAA alkaline batteries before being
boosted to 3.3V using on-board circuitry.

(b) Close-up view of the two active electrodes on either
side of the reference electrode. Electrodes are housed in
3D-printed locator structures that allow for slight pitch
and yaw deviations about the axis normal to the scalp.

Figure 4.5: Images of the final complete hardware system comprising electronic and mechanical EEG hard-
ware. All hardware was designed by the NGNI Lab. The band is intended to be worn such that the electrodes
make contact with the back of the scalp in the occipital or parieto-occipital region.

area. However, their stiffness also prevented excessive pitch and yaw deviations which may have arisen if the
electrodes were housed directly in the flexible headband strap.

4.2 Experimental Procedure

4.2.1 Data acquisition

Owing to limitations imposed by the Coronavirus Pandemic, all experimental data was recorded on the
author. The SSVEP stimulus squares interface shown in Figure 5.1 was displayed on an 11” Apple iPad Pro
(4th generation, 2020) with Apple A12Z CPU, 2388x1688 px (264 PPI) display resolution and 120Hz refresh
rate. The web page was displayed in the native Safari browser with no other apps running simultaneously so
as to minimise CPU load and provide consistent flicker frequency across the stimulus squares. With reference
to the diagram in Figure 4.6, the iPad was positioned d = 50cm away from the subject’s visual field at an
angle of θ = 45 degrees below the horizontal line-of-sight. It should be noted, however, that this arrangement
was followed approximately and is only provided as a rough guideline.

θ

d

Figure 4.6: Diagram showing the arrangement of the stimulus display device relative to a subject undergoing
the experiment. The dotted line represents the line-of-sight normal to the subject’s eye line and the solid
arrow is the position vector normal to the display device held distance d away from the visual field at angle
θ below the line-of-sight.

28

4.2. Experimental Procedure

4.2.2 Testing and verification

In order to verify that signals measured from by the BCI system were valid, several checks were devised.

Basic firmware test

The first very basic test involved verifying the integrity of the firmware on board the ESP32. This involved
testing basic peripheral functionality such as toggling an LED connected to a GPIO pin and sampling a
known, fixed value from the ADC. Storage and retrieval of data from flash, checking floating point precision
and verifying operations from third party modules were also checked.

Alpha band test

As mentioned briefly in Section 2.2.2, EEG signal energy related to visual processing typically occurs in the
alpha band between 8 and 13Hz and can be measured around the occipital region of the brain. As alpha
energy is pronounced when the eyes are closed and attenuated when they are open, this phenomenon can
be used as a basic test of the validity of a BCI. If signal energy as measured by the BCI in the occipital
region follows this pattern, it suggests that acquired signals are not simply random noise. It should be noted,
however, that individuals show varying levels of alpha reactivity and the difference in energy under these
two conditions may not be significant in all individuals.

Digital signal processing tests

In order to test the integrity of digital signal processing (DSP) elements in the BCI system (explored more in
detail in Chapter 5), the following preliminary checks were employed. In all of the following tests, data was
recorded on the electronic hardware detailed above and was analysed offline.

• in order to test the on-device digital low-pass filter, data was recorded with and without the filter
active. Analysis was performed to verify that signal components beyond the target frequency band
were suitably attenuated and that pass-band distortion was acceptable.

• in order to verify the equivalence between original and down-sampled versions of the same signal,
data was collected under three conditions: (i) sampling at fs = 256Hz with low pass filtering but no
downsampling, (ii) sampling at fs = 256Hz with low pass filtering and downsampling to f ′s = 64Hz
and (iii) sampling at fs = 256Hz with no low-pass filtering and downsampling to f ′s = 64Hz.

Artificial signal decoding test

In order to test the hardware and signal decoding elements, a square wave signal at a known frequency
f0 was produced and applied across the active electrodes. The resulting signal spectrum was measured
and compared to the theoretical spectrum of a square wave at frequency f0. This was performed with and
without low-pass filtering to determine if high frequency harmonics were being attenuated correctly. SSVEP
signal decoding algorithms were also tested by ensuring that they produced a decoded output matching the
artificial stimulus frequency f0.

4.2.3 Demonstration procedure

During the Royal Society exhibition, audience members attending remotely from various locations will be
presented a mobile-friendly, lightweight web page with several flickering squares that will form the SSVEP
stimuli. These squares will be programmed to flicker at predetermined stimulus frequencies f1, . . . , fn. Each
stimulus will correspond to an action - such as ‘up’ or ‘down’ - that will control an avatar in a cooperative
multiplayer game or simulation. The core objective of the designed BCI system is to decode f1, . . . , fn in order
to interpret each user’s desired action (i.e. discern which stimulus square they are focused on).

29

Chapter 5

System Design

5.1 Design of the SSVEP Stimuli

A key consideration in the design of the SSVEP stimuli is the stimulus frequencies f1, . . . , fn to use. As
mentioned in Section 2.3.1, similar studies typically use stimulus frequencies between 7Hz and 12Hz for this
task. Furthermore, as detailed in Section 2.4.2, CCA and CCA-based decoding algorithms involve a harmonic
reference signal set. An important consideration is the number of harmonics to include in these reference sets.
In order to allow for a fundamental stimulus frequency range of 7Hz to 12Hz, it is only feasible to include
one harmonic (Nh = 1) in the reference set since the second harmonic of a 12Hz stimulus signal would
occur at 36Hz which would likely be attenuated somewhat by the analogue low-pass filter (corner frequency
of 37.4Hz) and low-pass filter dynamics of the adjustable output amplifier (corner frequency of 36.35Hz)
shown in Figure 4.3. Furthermore, including the second harmonic for each stimulus frequency would have
significant memory and computation implications. It is for these reasons that only a single harmonic was used
in this system (where applicable). For the experiments conducted in this project, three stimulus frequency at
7, 10 and 12Hz were used.

Figure 5.1: Screen capture of the user interface for displaying SSVEP stimuli. The blocks can be independently
set to any flicker frequency of interest.

5.1.1 SSVEP stimulus interface

Naturally, an important part of a SSVEP-based BCI system is the SSVEP stimuli which are to be presented
to individuals participating in the exhibition (or in general, anyone interacting with the system thereafter).
Taking into account design parameters such as stimulus colour, position and contrast mentioned in the
literature cited in Section 2.3.1, a basic user interface (UI) was designed with a series of flashing squares as

30

5.2. Design of the Digital System

depicted in Figure 5.1. This UI was implemented1 as a lightweight HTML page with basic CSS styling and
Javascript to handle animation (flickering of the squares). This decision was made to allow for the simplest
and most convenient deployment across any device capable of displaying a web page (mobile or otherwise).

Note that external factors related to this project may only require some subset of the stimuli shown in Figure
5.1; for example, the square corresponding to ‘down’ may be omitted if only the other three actions are
required in the game/simulation. The configuration shown is for indicative purposes only.

5.2 Design of the Digital System

sample

low-pass filter downsample

decoding

precomputed

harmonic reference

prepare data

payload

publish to AWS IoT

over MQTT

historical data

template

POST request to

remote server

send to serial client

over UART
rolling data buffer

update

snapshot
x[n]

Digital signal processing

Sampling & buffering

On-device decoding

Logging

Networking

processed time series
x'[n]

decoded result
y

signal
x(t)

Figure 5.2: Overview diagram of the core components that comprise the digital system designed in this
project.

5.2.1 Digital signal processing system

A crucial part in the design of the BCI system is the digital signal processing (DSP) system. The key functions
of this system are to digitise, filter and resample the analogue output of the analogue signal processing system
presented in Figure 4.3. An overview of the DSP system is shown in Figure 5.3.

low-pass filter downsample

x(t) x2[n] x3[n]
sample

x1[n]
(b)(a) (c)

to
decoder

Figure 5.3: Overview diagram of the core components of the digital signal processing system.

Sampling and decimation

The analogue signal x(t) is digitised to x1[n] using the 12-bit SAR ADC on-board the ESP32. A sampling
frequency of fs = 256Hz was selected based for several reasons. First, this is a typical value mentioned in the
literature as noted in Section 2.3.1. Second, and more importantly, considering the SSVEP stimulus frequency
band of 6 - 12Hz as mentioned in Section 5.1, and allowing for one reference signal harmonic in CCA-based
decoding algorithms, the maximum theoretical frequency required is fmax = 24Hz. Incorporating a small
margin for roll-off of the low-pass filter with fc = 26Hz, sampling at fs > 2 fmax = 56Hz is required in order
to satisfy the Nyquist sampling criterion and avoid aliasing. 64Hz was identified as an appropriate fit as it is
a factor of 256Hz which facilitates decimation by an integer factor.

Figure 5.4 shows a high-level view of the sampling and filtering requirements of the system taking into
account EEG and SSVEP dynamics, as well as restrictions specific to this project such as memory constraints.

1code implementation available here.

31

https://github.com/JamesTev/EEG-decoding/blob/master/ui/ssvep_squares.html

5.3. Embedded Firmware

7 1412 24

f0min f0max 2f0max2f0min

(a) (b)

frequency (Hz)
26

fc

32

fn

Figure 5.4: Diagram showing SSVEP stimulus frequency bands and other important frequencies. Band
(a) represents the fundamental stimulus frequency range and (b) represents the range of first harmonics
thereof. The dotted red line is an indicative (idealised) low-pass filter response with corner frequency at
fc = 26Hz. Including a small safety margin to allow for filter roll-off, fn represents the Nyquist frequency for
this configuration.

Digital filtering

As indicated in Figure 5.4, an ideal low-pass filter for this system would achieve zero pass-band distortion
(ripple) between 7 and 24Hz and steep roll-off after fc = 26Hz to achieve complete signal attenuation before
the Nyquist frequency fn = 32Hz. Obviously, this is not physically realisable and so a trade-off between
maximising filter roll-off and minimising pass-band ripple must be sought.

Infinite impulse response (IIR) filters are typically more suitable for small, resource-constrained DSP systems.
Compared to finite impulse response (FIR) filters, they generally offer:

• the ability to be implemented recursively

• greater computational efficiency

• lower memory requirements

• improved resolution at lower frequencies

Although FIR filters typically offer greater stability and controllability owing to only having zeros in their
transfer functions, the aforementioned benefits of IIR filters were deemed to be more important for this
application.

Figure 5.5 shows the frequency response of three different commonly used IIR digital filters: type I and II
Chebyshev filters, as well as an elliptical filter. Each of these filters were designed to meet the following
requirements:

• maximum filter order of n = 10

• maximum pass-band ripple (below unity gain) of rp = 0.2dB

• minimum stop-band attenuation of rs = 80dB

Observing the magnitude plot in the to half of Figure 5.5, it is evident that the response of the elliptic filter
offers the optimal balance of steep roll-off between pass and stop bands and acceptable ripple in the stop
and pass bands. This is intuitive: as rp approaches zero, the elliptical filter becomes a Chebyshev type II
filter. As rs approaches zero, it becomes a Chebyshev type I filter. The phase response of the elliptical filter
is also largely linear in the pass-band. For these reasons, a 10th order elliptical low-pass filter satisfying the
aforementioned design requirements was selected.

5.3 Embedded Firmware

As alluded to in Section 4.1.2, all firmware for this system was to be developed for the ESP32 SoC developed
by Espressif Systems. Espressif offers a comprehensive open source framework called the Espressif IoT De-
velopment Framework (ESP-IDF) that can be used to develop ESP32-based applications on Windows, Linux
and macOS using C and C++ programming languages. Furthermore, ESP-IDF tooling has been extended to
be used with the popular open source platform Arduino. While the ESP-IDF has arguably become the de
facto standard for developing complex embedded applications for the ESP32, a different approach was taken
in this project for reasons explored below.

32

https://github.com/espressif/esp-idf

5.3. Embedded Firmware

0.0 0.2 0.4 0.6 0.8 1.0

0
8

20

40

80

100

Ga
in

 (d
B)

elliptical cheby. type I cheby. type II 50Hz at fs = 256Hz

0.0 0.2 0.4 0.6 0.8 1.0
Normalized frequency (1.0 = Nyquist)

/2

0

/2

Ph
as

e
(ra

d)

elliptical cheby. type I cheby. type II 50Hz at fs = 256Hz

Figure 5.5: Frequency response of the digital low-pass filter implemented in firmware on the ESP32. The
pre-filtered Nyquist frequency in this implementation is 128Hz: half the 256Hz sampling frequency.

5.3.1 MicroPython

MicroPython is a lean and highly efficient implementation of the Python 3 language that provides a carefully-
selected subset of the Python standard library that is optimised for microcontrollers and other resource-
constrained targets [40]. In fact, MicroPython is a full Python compiler and runtime implemented in C (C99)
that runs natively (on bare metal) on several architectures. It is an open source project started by Damien
George in 2013 that has since gained great traction from the open source community with constant feature
updates and fixes. Some of its notable features include [40]:

1. compact enough to fit and run within 256k of ROM (code space) and 16k of RAM.

2. many different compile-time configuration options

3. support for many architectures (both for microcontrollers and fully-fledged microprocessors): x86, x86-
64, ARM, ARM Thumb, Xtensa

4. inline assembler for Thumb and Xtensa instruction sets

5. a cross-compiler that allows ordinary Python scripts to be cross-compiled into bytecode that can be
loaded from non-volatile flash instead of RAM.

6. explicit memory errors (MemoryError) for heap exhaustion

7. explicit run time errors (RuntimeError) when reaching the stack limit

The technical features of MicroPython listed above have some very useful practical implications for applica-
tion development on the ESP32 that are not available when developing using the ESP-IDF in C/C++. Practical
advantages of MicroPython include:

• The convenience of using the Python programming language which offers far more high-level functions
and constructs over C or C++.

• A real-time interactive Python prompt (REPL) that allows commands to be tested and executed imme-
diately over a serial connection. For some MicroPython ports, including that of the ESP32, a WebREPL
is also provided that allows for interactivity over a wireless network connection.

• Support for both microcontroller and desktop architectures such as X86 allows MicroPython code to be
tested with exact equivalence on a personal computer without having to interact with a microcontroller.
This can be very useful for prototyping and algorithm development.

33

5.3. Embedded Firmware

• A very familiar and intuitive micro-directory and module structure that emulates regular Python mod-
ules (explored more below).

• A community of open source developers that can very easily contribute new modules and peripheral
functionality

5.3.2 Module structure

As alluded to above, a very convenient feature of MicroPython is its intuitive module/file structure. It allows
python modules in the form of .py files to be organised in folders that serve as packages as with regular
Python. This file structure is stored directly in flash storage on the device and can be read or written to at
any time during development. Consider the module structure of the MicroPython application developed in
this project below:

/

boot.py

main.py

.env

lib

core.py

decoding.py

peripherals.py

...

certificates

dab0ac2b5c-private.pem.key

dab0ac2b5c-public.pem.key

dab0ac2b5c-certificate.pem.crt

logs

log-17082021-1.json

log-10072021.txt

The root directory contains two important files - boot.py and main.py - that are run in sequence at boot
time. The boot.py script is typically used for internal system processes and main.py is used for any user
functionality that should automatically be run at boot. Also in the root directory is the .env file which can be
used to store sensitive environment variables such as Wi-Fi passwords or API key strings. The lib directory
(package) contains the modules that implement the actual functionality of the digital system, including
peripheral management, decoding and computation and networking (note that not all modules are shown
above). Amazon Web Services (AWS) key files and certificates for secure MQTT communication are stored in
the certificates folder. Finally, a logs directory shows how log files can also be very conveniently stored in
arbitrary formats such as .json or .txt in non-volatile flash memory. Listing 1 below demonstrates how user-
specific modules and files can be imported and used within a new script once flashed to the microcontroller’s
non-volatile memory.

import user-specific functions from non-volatile memory

from lib.decoding import cca

from lib.computation import solve_gen_eig_prob as solve_eig

MicroPython emulation of the standard Python `os` module

import os

list root directory

print(os.listdir('/'))

open and read a file from flash

with open('/logs/log-10072021.txt') as f:

print(f.read())

Listing 1: Basic MicroPython code to import user-specific modules and read from a text file in non-volatile
storage. Note that the syntax is identical to ordinary Python.

34

5.3. Embedded Firmware

5.3.3 Numerical computation

An additional important motivation for using MicroPython over the more traditional C/C++ approach is the
ability to use an extremely convenient open source MicroPython module called ulab2. The ulab project was
created to offer a subset of the very popular NumPy numerical computing library for Python which offers
highly performant array computing and linear algebra functionality. It also implements a small subset of
functionality offered by SciPy; the equally popular scientific computing library for Python. Some of the most
notable features offered by this module include [36]:

1. compact, iterable and sliceable array structures for numerical data up to 4 dimensions

2. extremely frugal with RAM usage

3. efficient, vectorised computations on multi-dimensional arrays

4. basic linear algebra functionality such as matrix inversion, multiplication, determinants, Cholesky and
QR decomposition

5. fast Fourier transforms (FFTs)

6. implementation of digital filters using second order sections (SOS)

7. basic numerical approximation and function minimisation

Being able to perform matrix and array operations, filtering and numerical approximation on a microcon-
troller in an elegant, Pythonic way is clearly an invaluable asset for this project. Indeed, for any project of
this sort, it is somewhat amazing. Listing 2 briefly demonstrates just how effortlessly complex numerical
computations can be performed using ulab.

import ulab numpy module

from ulab import numpy as np

create an arbitrary positive definite, symmetric 3x3 matrix

A can be sliced like A[i0:i1, j0:j1]

A = np.array([[25, 15, -5], [15, 18, 0], [-5, 0, 11]])

compute lower triangular square root or A using Cholesky decomp

A_sqrt = np.linalg.cholesky(A)

compute determinant of A

det_A = np.linalg.det(A)

compute inverse of A

A_inv = np.linalg.inv(A)

compute Moore-Penrose pseudoinverse of A = (A^T.A)^-1.A^T

A_pinv = np.dot(np.linalg.inv(np.dot(np.transpose(A), A)), np.transpose(A))

many other utility functions such as argmax(), argsort(), convolve()

Listing 2: Illustration of the convenience offered by the ulab module for linear algebra and general numerical
computing.

5.3.4 Networking

Once processed and decoded, data from many BCI devices must be streamed to a central cloud service. The
design of this cloud service was beyond the scope of this project. However, it was specified that the Amazon
Web Services (AWS) IoT Core service was to be used. This service allows IoT devices to securely exchange
small data payloads over the Internet using the MQTT protocol. MQTT is a lightweight, publish-subscribe
protocol that has become commonplace in the realm of IoT communication. As mentioned in Section 4.1.2,
the ESP32 SoC has integrated Wi-Fi functionality. MicroPython includes generic socket functionality that can
be used to implement an MQTT client for interfacing with AWS.

As seen in Figure 5.6, the MQTT protocol defines a message broker (server) and several clients. In this case,
the AWS IoT service acts as an MQTT broker that receives messages published by remote ESP32 BCI clients.

2Source code and documentation available here.

35

https://numpy.org/
https://www.scipy.org/
https://github.com/v923z/micropython-ulab

5.3. Embedded Firmware

AWS Cloud

AWS IoT
Core

MQTT
broker

ESP32 MQTT client
clientID_1

ESP32 MQTT client
clientID_2

ESP32 MQTT client
clientID_N

...

Remote BCI devices

Application instance
clientID_1

Application instance
clientID_2

Application instance
clientID_N

...

Remote application interfaces

websocket
streaming

service
Publish to topic

eeg_bci_topic

Figure 5.6: Diagram showing the client-broker MQTT interface for relaying data captured by remote BCI
devices to an AWS cloud service and thereafter, to a web application for visualisation.

Each of the clients have a unique client ID but subscribe to a common topic that the AWS service expects.
Although the design of subsequent elements in the AWS cloud pipeline was not included in this project, a
schematic representation is presented in Figure 5.6: data received from BCI clients over MQTT is streamed
to a web application which displays EEG data in real time.

5.3.5 Logging

Data logging from the ESP32-based BCI hardware was crucial for this project. This enabled the gathering of
experimental data, but also various signals and messages for debugging during development. By leveraging
the built-in WiFi functionality on the ESP32, a basic wireless logging system was created.

ESP32
clientID_1

ESP32
clientID_2

ESP32
clientID_N

...

Remote BCI devices

POST request with
data payload

REST API

HTTP webserver

log file
write to disk

analysis

Figure 5.7: Diagram showing the web logger interface

Figure 5.7 provides an overview of the web-based logging system. Potentially many ESP32 devices collect
data and periodically log data to a web server. Typically, a REST API (application progamming interface) is
deployed on the server which accepts requests from clients and processes and stores request data. In this
project, a basic REST API3 was created using Flask, an open source web micro-framework written in Python.

The JSON object in Listing 3 shows an example of a data payload sent via an ESP32 client to the logging API.
Decoded data, as well as raw data used to perform on-board decoding, is compiled into each data payload.
Each payload is then sent via an HTTP POST request to the logging server. Once received and verified by
the API, data is written to a log file stored on the server. Note that in this project, the server and API were
run on a local network and data was thus stored on a personal computer. However, the system would work
identically if the server was deployed in the cloud. This would allow data to be logged by remote BCI devices
from anywhere in the world and would not require users of the devices to run their own local server. This
could facilitate a decentralised data acquisition system that could enable wide-scale data collection.

3source code available here.

36

https://flask.palletsprojects.com/en/2.0.x/
https://github.com/JamesTev/EEG-decoding/blob/master/eeg_lib/logging_server.py

5.4. Algorithm Implementation

{

"client_id": "esp1", # used to identify which device data was received from

"timestamp": 1630235886, # used for synchronisation and periodicity monitoring

"trial_id": "test_123", # used to group trials

"decoded_data": { # dict of stim. freqs and their decoded outputs

"7": 0.12,

"10": 0.56,

"12": 0.04

},

"raw_data": [[0.02859, 0.054, ..., 0.345], # raw data for further offline analysis

[0.412, 0.001, ..., 0.345]]

}

Listing 3: Example JSON data payload sent from a remote ESP32 device via POST HTTP request to the logging
server

5.3.6 Digital filtering

The digital low-pass filter described in Section 5.2.1 whose frequency response is shown in Figure 5.5 was
designed using SciPy. In particular, given the filter design requirements, the scipy.signal.ellip() function
was used to generate filter coefficients. Using the output==‘sos’ argument, the filter coefficients were com-
puted in a cascaded second-order sections (SOS) representation. The SOS representation of an IIR filter with
digital transfer function H(z) is as follows:

H(z) = K
N−1

∏
n=0

bn, 0 + bn, 1z−1 + bn, 2z−2

1 + an, 1z−1 + an, 2z−2 , (5.1)

where K is a gain scalar, N is the number of sections and an and bn are the reverse and forward coefficients
for section n respectively. Notice that in the form in (5.1), only a highest order of 2 is present for any compo-
nent. This cascaded lower-order form offers greater numerical stability and less sensitivity to quantisation of
coefficients than standard higher order polynomials.

The filter coefficients, once computed offline, were stored as constants in the the ESP32 firmware (in particular,
in the lib.signal module). As there was no need to recompute or otherwise modify these coefficients, they
were stored in read-only flash memory to persist across power cycles and save space in RAM. In order to
run digital filtering on the ESP32 itself, the convenient scipy.signal.sosfilt() from the ulab module was
used. This function simply takes the pre-computed SOS coefficients and the input signal and returns the
filtered version. Tests were performed to ensure equivalence between this implementation and the standard
implementation in the fully-fledged SciPy module.

5.4 Algorithm Implementation

5.4.1 Eigenvalue algorithms

As elaborated on in Chapter 3, the decoding algorithms explored in this project all resolve to constrained
optimisation problems that can be reformulated as eigenvalue problems. Consequently, an ‘eigen’ func-
tion capable of finding the eigenvalues (and corresponding eigenvectors) of an arbitrary matrix was crucial
in the design of this system. The ulab module conveniently includes a basic eigen function of this sort:
numpy.linalg.eig(). However, the severe limitation with this implementation is that it only works with
symmetric matrices (i.e. matrices with real eigenvalues). For signal decoding, many of the eigenvalue prob-
lems arising in this project involve asymmetric matrices. Thus, an alternative solution needed to be sought.

After much experimentation and difficulty finding an analytical solution that could work4 under all condi-
tions, it was decided that iterative eigenvalue algorithms should be explored.

Power Iteration

The simple but elegant power iteration algorithm explored in Section 3.1.3 can easily be implemented in
firmware. The pseudocode for this algorithm is provided in Algorithm 1. The corresponding MicroPython

4produce the correct result and maintain numerical stability

37

5.4. Algorithm Implementation

implementation is documented in Listing 4.

Algorithm 1 Power iteration

Pick an initial vector v(0) with ‖v(0)‖ = 1 . Initial unit vector assigned randomly
for k = 1, 2, . . . , K do . repeat for K iterations

w← w = Av(k−1) . update eigenvector estimate
v(k) ← w/‖w‖ . normalise new estimate

end for

Simultaneous Iteration

As discussed in Section 3.1.4, the Simultaneous Iteration algorithm provides an effective extension of Power
Iteration by solving for all eigenvectors simultaneously. The pseudocode for the implementation of this
algorithm is given in Algorithm 2.

Algorithm 2 Simultaneous iteration

Pick an initial basis for {v(0), . . . , v(d)} for Rd . initialise set of random basis vectors
Construct the matrix V =

[
v(0)

1 . . . v(0)
d

]
Obtain the factors Q(0)R(0) = V(0) . compute QR factorisation of V(0)

for k = 1, 2, . . . , K do
W←W = AQ(k−1) . update step
Obtain the factors Q(k)R(k) = W . extract orthonormal column vectors of W from Q(k)

end for

QR Iteration

Finally, as revealed in Section 3.1.5, the QR Iteration algorithm is a more convenient form of the Simultaneous
Iteration algorithm that is more commonly used in practice. Pseudocode for its implementation in this project
is given in Algorithm 3. The MicroPython implementation of this algorithm is presented in Listing 5 in

Algorithm 3 QR iteration

A(0) ← A
for k = 1, 2, . . . , K do

Obtain the factors Q(k)R(k) = A(k−1) . perform QR factorisation on A(k−1)

A(k) ← R(k)Q(k) . update step detailed in [9]
end for

Appendix A.1.

Generalised eigenvalue algorithm

The generalised eigenvalue problem for two symmetric matrices A, B ∈ Rd×d is given by the form

Axi = λiBxi, ∀i ∈ {1, . . . , d}, (5.2)

where xi and λi are the eigenvectors and eigenvalues of the system respectively. This problem is relevant to
several decoding algorithms explored in this project, including the GCCA and MsetCCA algorithms explored
in Chapter 3. The proof for solving for xi and λi is involved but well known and is given in [24]. However,
understanding the algorithm to solve this problem is crucial for enabling implementation in firmware. The
generalised eigenvalue algorithm, extracted from [24], is given in Algorithm 4 below.

The MicroPython implementation of the generalised eigenvalue algorithm can be found in Listing 6 in Ap-
pendix A.1.

38

5.4. Algorithm Implementation

Algorithm 4 Generalised eigenvalue algorithm
ΦB, ΛB ← BΦB = ΦBΛB . compute eigenvectors ΦB and eigenvalues ΛB of B

Φ̃B ← Φ̃B = ΦBΛ−1/2
B ≈ ΦB

(
Λ1/2

B + εI
)−1

. multiply above by Λ−1/2
B , define intermediate Φ̃B

Ã← Ã = Φ̃>B AΦ̃B . define intermediate Ã
ΦA, ΛA ← ÃΦA = ΦAΛA . compute eigenvectors ΦA and eigenvalues ΛA of Ã
Λ← Λ = ΛA . notice that eigenvalues of Ã are the generalised eigenvalues
Φ← Φ = Φ̃BΦA . compute generalised eigenvectors
return Φ, Λ . return the generalised eigenvector and eigenvalue matrices

5.4.2 Decoding algorithms

CCA

The implementation of the CCA algorithm introduced in Section 2.4.2 is demonstrated in Algorithm 5. The ε
argument is used for numerical conditioning to ensure matrices CXX, CYY are not singular prior to inversion.
Typical values are in the range of ε ≈ 10−7. In the case of CCA for SSVEP decoding as in this project, the
reference signal argument Y would be the harmonic reference signal as specified in Section 2.4.2.

Algorithm 5 CCA algorithm

1: function ComputeCCA(X, Y, ε) . Input signal X ∈ RNc×Ns and ref. signal Y ∈ Rq×Ns , q ∈N

2: CXX ← CXX = XX> . Signal covariance matrix
3: CYY ← CYY = YY> . Reference covariance matrix
4: CXY ← CXY = XY> . Cross covariance matrix
5: M← M = (CXX + ε)−1CXY(CYY + ε)−1C>XY . Store intermediate result in M
6: λ∗ ← Mw = λw . Find maximum eigenvalue λ∗ of M using Algorithm 3
7: return

√
λ∗ . Maximum canonical corr. is square root of λ∗

8: end function

The MicroPython implementation of this algorithm is presented in Listing 7 in Appendix A.1.

GCCA

The implementation of the GCCA algorithm introduced in Section 2.4.2 is demonstrated in Algorithm 6. As
this is a template-based algorithm that requires calibration or training data prior to inference, there are two
distinct functions: FitGCCA() and ComputeGCCA(). The former must be executed before inference using the
ComputeGCCA() function can begin. The Python implementation of this algorithm is presented in Listing 9
in Appendix A.1.

MsetCCA

The implementation of the MsetCCA algorithm introduced in Section 2.4.2 is demonstrated in Algorithm
7. As with the GCCA algorithm implementation in Section 5.4.2, the FitMCCA() and ComputeMCCA()
functions must be executed in sequence. That is, inference requires the optimised reference signal Y that is
computed by FitMCCA(). Note that, for ease of explanation, the single-channel case Nc = 1 (as used in this
project) has been documented here.

The MicroPython implementation of this algorithm is presented in Listing 8 in Appendix A.1.

39

5.4. Algorithm Implementation

Algorithm 6 GCCA algorithm

1: function FitGCCA(X) . Input training/calibration data tensor X ∈ RNc×Ns×Nt

2: Xc ← Xc =
[
X>1 X>2 . . . X>Nt

]
. Form Xc ∈ RNc×(Ns Nt) by concatenating trials Xi of X

3: X← X = 1
Nt

∑Nt
i=1 X i . Form signal template by averaging data across trials Xi, ∀i

4: Xc
=
[
X> X> . . . X>

]
. Form concat. template Xc ∈ RNc×(Ns Nt) to match dim. of Xc

5: generate Y . Form harmonic reference set Y ∈ R2Nh×Ns

6: Yc ← Yc =
[
Y> Y> . . . Y>

]
. Form concat. reference Yc ∈ R2Nh×(Ns Nt) to match dim. of Xc

7: w̃← w̃ =
[
wXc wXc wYc

]>
. Form augmented spatial filter vector

8: X̃ = X̃ =
[
(Xc)> (Xc

)> (Yc)>
]>

. Form augmented signal matrix

9: D← D = diag
(

Xc(Xc)>, Xc
(Xc

)>, Yc(Yc)>
)

. Form intermediate block-diagonal matrix D

10: w̃∗, λ∗ ← X̃X̃
>

w̃ = λDw̃ . Find eigen pair with max eigenvalue λ∗ (Algorithm 4)
11: store w̃∗, X, Y . Store optimised spatial filter (eigenvector) w̃∗ ∈ R2(Nc+Nh)

12: end function

13: function ComputeGCCA(Xtest) . Test data X ∈ RNc×Ns

14: wXc , wXc , wYc ← w̃∗ . Extract component filters from optimised w̃∗

15: ρ1 ← ρ1 = corr(XtestwXc , XwXc) . Canonical corr. between Xtest and historical template
16: ρ2 ← ρ2 = corr(XtestwXc , YwYc) . Canonical corr. between Xtest and harmonic reference
17: ρ← ρ = sign(ρ1)ρ

2
1 + sign(ρ2)ρ

2
2 . Combined output correlation

18: return ρ
19: end function

Algorithm 7 MsetCCA algorithm (single channel, Nc = 1)

1: function FitMCCA(X) . Input training/calibration data matrix X ∈ RNt×Ns

2: R← R = XX> . Compute inter-trial covariance matrix
3: S← S = diag(R) . Construct intra-trial covariance matrix using diagonal entries of R
4: w∗, λ∗ ← (R− S)wi = λiSwi, ∀i ∈ {1, . . . , Nt} . Find eig. pair with max eig. val λ∗ (Algorithm 4)
5: Y∗ ← Y =

[
w∗1x1 w∗2x2 . . . w∗Nt

xNt

]
. Compute opt. reference Y ∈ RNt×Ns with xi as rows of X.

6: store Y∗

7: end function

8: function ComputeMCCA(Xtest) . Test data X ∈ RNc×Ns , Nc = 1
9: ρ← ComputeCCA(Xtest, Y∗) . Compute canonical corr. using CCA with optimised ref. Y∗

10: return ρ
11: end function

40

Chapter 6

Results

6.1 Hardware Verification and Testing

This section details the results of the various verification tests mentioned in Section 4.2.2. The purpose of
these tests was to verify that all core components of the designed system performed as expected. After basic
tests to verify firmware integrity and communication with the ESP32-based target board passed, the digital
signal processing (DSP) system was investigated. The results of important diagnostic tests are detailed below.
Throughout this section, ‘the hardware’ refers to the electronic hardware introduced in Section 4.1.2 and
pictured in Figure 4.2.

6.1.1 DSP system

As explained in Section 5.3, the DSP system is crucial for preparing analogue signals acquired from hardware
prior to decoding. In order to test several components of this system simultaneously, a square wave signal x[n]
at fundamental frequency f (0)x = 12Hz was fed to the ADC of the ESP32. Sampling was set to fs = 256Hz and
where applicable, downsampling to f ′s = 64Hz was used. Owing to the lack of access to a signal generator or
other laboratory equipment, the input signal x[n] was generated using a hardware timer on board the ESP32.
This experiment was designed to test the following components of the DSP system as follows:

1. sampling: a basic sanity check to verify that a square wave at 12Hz was indeed measured by the
ADC. This also offered a means of inspecting the consistency (both in amplitude and frequency) of the
measured signal.

2. filtering: the input signal x[n] was filtered by the onboard digital low-pass filter described in Sec-
tion 5.2.1 to yield y[n]. Given the filter’s corner frequency of fc = 26Hz, y[n] should only contain
the fundamental frequency f (0)x = 12Hz since higher order harmonics of the square wave input at
{ f (k)x | f

(k)
x = (2k− 1) f (0)x , k = 2, 3, . . . } = {36Hz, 60Hz, . . . } should be largely attenuated. Furthermore,

the measured spectrum of y[n] offers a way to compare the actual and designed behaviour of the filter.

3. downsampling: a simple check to confirm that, given all prior design decisions, downsampling does
not distort the originally measured signal excessively in the frequency band of interest (around 7−
12Hz). With low-pass filtering in place, there should be no aliasing or artefacts introduced.

All results reported below were computed on the hardware itself, i.e.: all DSP operations (sampling, filtering,
resampling) were computed on-device as would happen in a real application. Figures were then plotted
using Matplotlib, an open source Python library.

Figure 6.1 shows the filtered signal y[n] against the measured input square wave x[n]. From visual inspection,
x[n] appears to have very consistent frequency and amplitude as desired. y[n] shows marginal phase lag and
slight inconsistencies in amplitude compared to the ideal output y∗[n] = 4

π sin(2π f (0)x n). However, these
slight deviations are certainly tolerable and would make little to no difference to the success of subsequent
decoding algorithms.

Figure 6.2 shows PSD estimates P̂x(ω) and P̂y(ω) of x[n] and y[n] respectively in the form of periodograms.
Confirming the time domain representation in Figure 6.1, P̂x(ω) shows power peaks at the odd numbered har-
monics of x[n]. This can be explained by the Fourier series expansion of an ideal square wave at fundamental

41

6.1. Hardware Verification and Testing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
am

pl
itu

de
 (V

)
x [n] y [n] y * [n]

Figure 6.1: Time domain plot showing the measured square wave signal x[n] together with the digitally-
filtered output signal y[n] designed to retain only the fundamental frequency f (0)x of x[n]. The ideal output
signal y∗[n] represents a sinsuoid at frequency f (0)x : y∗[n] = 4

π sin(2π f (0)x n).

frequency f (0) with 50% duty cycle:

x[n] =
4
π

∞

∑
k=1

sin(2π(2k− 1) f (0)n)
2k− 1

, (6.1)

which is nothing but an infinite sum of sinusoids whose amplitudes decay with frequency. Notice that only
odd-numbered harmonics in (6.1) are non-zero. Therefore, the ideal spectrum Px(ω) of x[n] should be an
impulse train at frequencies (2k− 1) f (0)x , k ≥ 2, k ∈ Z.

While not quite impulses, power peaks of P̂x(ω) in Figure 6.2 are clearly visible at the odd-numbered har-
monics at 26Hz, 60Hz and so on. The spectrum of the filtered signal, P̂y(ω), shows very little distortion in
the pass-band between 0 and fc = 26Hz, as well as impressively steep roll-off for f > fc. As a result, only the
fundamental frequency of x[n] is captured in y[n], as desired. Attenuation of higher frequency harmonics in
x[n] by the digital filter is evidently very effective and meets the design criteria stated in Section 5.2.1: stop-
band attenuation is approximately 80dB, as can be seen in the power difference between P̂x(ω) and P̂y(ω) at
60Hz, for example.

0 12 24 36 48 60 72 84 96 108 120 132
frequency (Hz)

60

70

80

90

100

110

Po
we

r (
dB

)

Px () Py ()

0 12 24 36 48 60 72 84 96 108 120 132
frequency (Hz)

60

40

20

0

20

40

60

Po
we

r (
dB

)

Px () Py ()

Figure 6.2: Standard periodogram (left) and Welch-averaged periodogram (right) representing PSD estimates
of measured input signal x[n] and filtered output y[n]. Dashed vertical lines mark f (0)x and odd-numbered
harmonics of x[n].

Along with P̂x(ω) as before, Figure 6.3 shows the estimated spectra P̂z(ω) and P̂alias(ω), where P̂z(ω) corre-
sponds to z[n], the downsampled version of the filtered output y[n] and P̂alias(ω) is the estimated spectrum
of x[n] after being downsampled with no prior filtering. Both resampled signals were downsampled by a
factor of 4 to f ′s = 64Hz. As is particularly evident from the artefacts at 4Hz, 20Hz and 27Hz in the Welch-

42

6.1. Hardware Verification and Testing

averaged periodogram in Figure 6.3, aliasing has occurred in P̂alias(ω). The full spectrum of P̂x(ω) in Figure
6.2 explains this behaviour: x[n] contains substantial energy at higher frequencies past f > f ′n = 32Hz where
f ′n is the Nyquist frequency for the downsampled rate of f ′n = 64Hz. This demonstrates the necessity for
low-pass filtering to isolate the frequency band of interest before downsampling. On the other hand, Figure

0 5 10 15 20 25 30
frequency (Hz)

50

60

70

80

90

100

110

Po
we

r (
dB

)

Px () Pz () Palias ()
0 5 10 15 20 25 30

frequency (Hz)

0

10

20

30

40

50

60

Po
we

r (
dB

)

Px () Pz () Palias ()

Figure 6.3: Standard periodogram (left) and Welch-averaged periodogram (right) representing PSD estimates
P̂x(ω) and P̂z(ω) of input x[n] and filtered, downsampled output z[n] respectively. P̂alias(ω) shows the
estimated spectrum of a downsampled version of x[n] without prior low-pass filtering

.

6.3 also demonstrates the effectiveness of the DSP system as a whole: with suitable low-pass filtering, the
spectrum of the downsampled signal z[n] in the pass-band between 0 and 24Hz agrees very closely with that
of the original signal x[n].

6.1.2 Hardware and data acquisition

0 4 8 12 16 20 30 40 50 60
frequency (Hz)

0

20

40

60

80

100

120

Po
we

r (
dB

)

0 4 8 12 16 20 30 40 50 60
frequency (Hz)

30

20

10

0

10

20

Po
we

r (
dB

)

(a) eyes open

0 4 8 12 16 20 30 40 50 60
frequency (Hz)

0

20

40

60

80

100

120

Po
we

r (
dB

)

0 4 8 12 16 20 30 40 50 60
frequency (Hz)

20

10

0

10

20

Po
we

r (
dB

)

(b) eyes closed

Figure 6.4: Alpha band test: periodograms showing N = 1024 point PSD estimates for EEG signals measured
from a subject in two distinct states: with eyes open and eyes closed. Data was acquired using the early
hardware prototype in Figure 4.4. Attention should be given to signal power around 8− 10Hz (alpha band).
In both (a) and (b), the left subplot shows a standard, non-windowed periodogram accompanied by a Welch-
averaged periodogram to the right. Different coloured traces represent independent trials.

As mentioned in Chapter 4, the rudimentary headband discussed in Section 4.1.2 was created as a means of
acquiring and testing real-life data from the electronic hardware prototype introduced in Section 4.1.2. After

43

6.2. Experimental Decoding Results

verifying the fidelity of the DSP system, a basic BCI test known as the ’alpha test’ was performed. This
involves measuring the EEG signals generated by the brain’s visual cortex during two distinct states: with
eyes open and eyes closed. In particular, signal energy in the alpha band between 8-12Hz is observed. As
mentioned briefly in Section 2.2.2, a working BCI should be able to discern greater energy in the alpha band
when a subject’s eyes are closed compared to when open.

Figure 6.4 shows the estimated power spectra recorded over several trials in each of the two aforementioned
states. Particularly around 8Hz, Subfigure 6.4b representing the eyes-closed state shows noticeably more
signal power in the alpha band relative to the rest of the signal (compared to the eyes-open state). This is
suggestive of the presence of valid EEG signals as opposed to just random noise.

6.1.3 Execution time profiling

A number of trials were performed to determine the consistency of execution time across key system pro-
cesses in the sample-process-decode-publish loop. Figure 6.5 shows the distributions of execution times
recorded over several trials. In each trial, all possible functionality was enabled so as to test maximum com-
putational loading. ‘Auxiliarly processing time’ is defined as the processing time in each loop required for
any operations besides decoding computation and publishing to AWS over MQTT.

67.5 70.0 72.5 75.0 77.5 80.0 82.5
time (ms)

0

10

20

30

40

fre
qu

en
cy

mean
1 std. dev.

(a) decoding computation

0 250 500 750 1300 1700 2100 2500 2900
time (ms)

0

50

100

150

200

fre
qu

en
cy

mean
1 std. dev.

(b) MQTT publish

160 170 180 190
time (ms)

0

5

10

15

20

25

30

fre
qu

en
cy

mean
1 std. dev.

(c) auxiliary processing

Figure 6.5: Execution time distributions for key processes in the sample-decode-publish loop. Auxiliary
processing refers to any processing besides that which is required for decoding and publishing data to the
cloud.

6.2 Experimental Decoding Results

In this section, the experimental results of various decoding algorithms introduced in Chapter 2 are reported.
Unfortunately, because only single channel EEG signals were available using the hardware provided in this
project, the TRCA algorithm was no longer appropriate. This is due to the fact that it tries to find optimal spa-
tial filters for task-related discrimination; effectively optimally-weighted combinations of multiple channels.
Clearly, having only a single channel renders this approach ineffective.

Evaluation of results

Worth noting is the method used to evaluate results reported below. For template-based decoding algorithms
(GCCA, MsetCCA), initial training or calibration is required using historical template data. The term ‘cal-
ibration’ is preferred since in practice, calibration must happen automatically on the device and the term
‘training’ is typically associated with offline model fitting.

Leave-p-out cross-validation (LpO CV) was employed in order to minimise the risk of selection bias or over-
fitting to pathological test cases. Usually, LpO CV refers to training a model on n − p observations and
validating on the held-out p validations (with p < n). However, in this project, template-based algorithms
were instead calibrated on the smaller p-partition and validated on the remaining n− p samples. This more
appropriately reflects the practical dynamic of this system where only few calibration trials will be available
before inference needs to begin.

LpO CV was selected, as opposed to leave-one-out CV1, for example, as it provides the ability to vary p
in order to investigate the effect of more or fewer calibration trials on decoding performance. For n trials

1a special case of LpO CV with p = 1 that is more commonly used

44

6.2. Experimental Decoding Results

or observations, LpO CV will generate (n
p) unique calibration-validation splits2. Validation metrics, such as

accuracy, are then averaged across all splits (unless otherwise stated). This is depicted graphically in Figure
6.6. Note that, contrary to Lpo CV, the more well-known k-fold cross-validation technique is a non-exhaustive

calibration

validation

calibration

validation

Figure 6.6: Diagram illustrating leave-p-out cross validation (Lpo CV). Individual blocks in each row are
different trials, each represented by a data matrix Xn ∈ RNs×Nc where Ns is the number of samples per
trial and Nc is the number of channels (Nc = 1 in this project). For n trials, there will be (n

p) different
calibration-validation splits (rows of blocks).

CV method as it does not test every combination of splits in the original data sample: it only selects train-
validation splits whose elements are contiguous. In comparison, Lpo CV may select non-contiguous elements
in either or both of the train and validation sets. Therefore, k-fold CV is a less computationally-intensive
approximation of the more rigorous Lpo CV method.

6.2.1 The effect of recording window length

As alluded to in Section 2.3.1, arguably the most important factor in the decoding system - besides the
actual algorithm used - is the length of the recording window T. As cited in Chapter 2, decoding accuracy
almost always improved with increasing T. This is expected; longer time windows offer more samples to the
decoding algorithm being used. However, the trade off is decreased information transfer rate (ITR) which
results in a more sluggish BCI system.

Figures 6.7 and 6.8 show the effect of varying T on decoding accuracy for the GCCA and MsetCCA algorithms
respectively. For each algorithm, the effect of varying T is tested with four different calibration scenarios with
p = 1, . . . , 4 where p is the number of training or calibration trials. As expected, there is a monotonic increase
in average decoding accuracy (across stimulus frequencies for each trial) with increasing T.

6.2.2 The effect of varying calibration trials

Another important consideration for template-based algorithms such as GCCA and MsetCCA cited in the
literature is the number of calibration or training trials used to ‘fit’ the algorithms prior to inference. In this
context, ‘fit’ refers to computing optimised reference signals or canonical weights based on historical data.

Figures 6.9 and 6.10 show the effect of varying p, the number of calibration trials used to fit the GCCA and
MsetCCA algorithms respectively. These tests were performed in four different sets, each with a distinct
recording window length T. Similar to the prior experiment for varying T directly, there is a monotonic
increase in average decoding accuracy with increasing p. Note that the same cross-validation evaluation
procedure as explained in Section 6.2 was used to generate these results.

6.2.3 Generalisation testing

Of interest to template-based decoding algorithms that leverage historical ‘training’ or calibration data is
their ability to generalise to new sets of data. In order to clarify this idea in context, consider two trial sessions
Xa and Xb taken under different conditions where the subject would have at least had to remove and reinstall
the BCI headband on their head between sets. Thus, Xa and Xb would be recorded with slightly different
electrode positions and contact impedances and would therefore exhibit different signal quality.

This experiment was thus designed to investigate whether calibration using data from one session, Xa, say,
would allow generalise to another, say, Xb. That is, would calibrating using Xa and testing (validating) on Xb
yield comparable performance to calibrating and testing on data recorded from the same session as in prior
experiments? If so, the implication is that calibration would only need to be performed once-off, or at least,
not every recording session which would enhance the user experience. An extension of this experiment was

2This would generally become computationally infeasible for even modest n. However, the calibration or ‘training’ processes for the
algorithms in this project were not computationally intensive and the number of trials in each experiment never exceeded 10.

45

6.2. Experimental Decoding Results

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(a) p = 1

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(b) p = 2

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(c) p = 3

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(d) p = 4

Figure 6.7: GCCA decoding accuracy, varying T: effect of varying recording window length T on validation
accuracy for different numbers of calibration trails Nt. In each subfigure, all results were computed using
p = n, n ∈ {1, . . . , 4} calibration trials. Crosses connected with dashed traces denote average decoding
accuracy across stimulus frequencies for a given a given window length T. Error bars denote one standard
error of the mean.

to determine if calibrating using Xa and a small subset of Xb and then testing on the remainder of Xb would
yield better performance than only calibrating on the subset of Xb as in previous experiments.

The results of such an experiment are shown in Figure 6.12 and Figure 6.13 for the GCCA and MsetCCA
algorithms respectively. Continuing the analogy with Xa and Xb above, the number of ‘overlapping trials’
in these figures refers to the number of trials from Xb included in the calibration set along with the whole
of Xa. Accordingly, 0 overlapping trials would correspond to a situation where calibration was performed
exclusively on Xa and testing on Xb. This condition tests the initial question in the experiment mentioned
above. The case of n overlapping trials with n > 1 corresponds to calibration using all of Xa and n trials
from Xb while still testing using the left-over3 trials from Xb. Calibration and ‘training‘, as referred to in the
figures, are used interchangeably here.

3the set difference between all trials in Xb and the n-element subset used for calibration.

46

6.2. Experimental Decoding Results

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(a) p = 1

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(b) p = 2

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(c) p = 3)

0.5 0.75 1.0 2.0 4.0
window length (s)

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(d) p = 4

Figure 6.8: MsetCCA decoding accuracy, varying T: effect of varying recording window length T on vali-
dation accuracy for different numbers of calibration trails p. In each subfigure, all results were computed
using p = n, n ∈ {1, . . . , 4} calibration trials. Crosses connected with dashed traces denote average decoding
accuracy across stimulus frequencies for a given a given window length T. Error bars denote one standard
error of the mean.

1 2 3 4
Training trials

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(a) T = 0.75s (Ns = 192, N′s = 48)

1 2 3 4
Training trials

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(b) T = 2s (Ns = 512, N′s = 128)

Figure 6.9: GCCA decoding accuracy, varying p: effect of varying the number of training (calibration) trials
p on validation accuracy for recording windows of varying length T. In each subfigure, all trials are of
equal length T seconds which equates to Ns samples at fs = 256Hz and N′s samples at the downsampled
rate of f ′s = 64Hz. Crosses connected with dashed traces denote average decoding accuracy across stimulus
frequencies for a given p = n, n ∈ {1, . . . , 5}. Error bars denote one standard error of the mean.

47

6.2. Experimental Decoding Results

1 2 3 4
Training trials

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(a) T = 0.75s (Ns = 192, N′s = 48)

1 2 3 4
Training trials

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(b) T = 2s (Ns = 512, N′s = 128)

Figure 6.10: MsetCCA decoding accuracy, varying p: effect of varying the number of training (calibration)
trials p on validation accuracy for recording windows of varying length T. In each subfigure, all trials are
of equal length T seconds which equates to Ns samples at fs = 256Hz and N′s samples at the downsampled
rate of f ′s = 64Hz. Crosses connected with dashed traces denote average decoding accuracy across stimulus
frequencies for a given p = n, n ∈ {1, . . . , 5}. Error bars denote one standard error of the mean.

1 2 3 4
calibration trials p

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

2 f

T = 4.0s
T = 2.0s

T = 1.0s
T = 0.75s

(a) GCCA algorithm

1 2 3 4
calibration trials p

0.000

0.025

0.050

0.075

0.100

0.125

0.150
2 f

T = 4.0s
T = 2.0s

T = 1.0s
T = 0.75s

(b) MsetCCA algorithm

Figure 6.11: Graphs showing variance in decoding accuracy across the triad of stimulus frequencies at each
value of p. The standard deviation in accuracy over frequencies σ2

f is reported. Different colour traces
represent recording windows of different lengths as labelled.

0 1 2 3 4
Overlapping training trials

20
30
40
50
60
70
80
90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(a) Ns = 512, N′s = 128 ⇔ T = 2s

0 1 2 3 4
Overlapping training trials

20
30
40
50
60
70
80
90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(b) Ns = 1024, N′s = 256 ⇔ T = 4s

Figure 6.12: GCCA generalisation performance: decoding accuracy on data from distinct recording sessions
taken under different conditions, Xa and Xb where Xa is a calibration (training) set and Xb a test set. The
number of overlapping trials refers to the number of trials in Xb also used for calibration. Results using
T = 2s and T = 4s recording windows are shown. Error bars denote one standard error of the mean.

48

6.2. Experimental Decoding Results

0 1 2 3 4
Overlapping training trials

20
30
40
50
60
70
80
90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(a) Ns = 512, N′s = 128 ⇔ T = 2s

0 1 2 3 4
Overlapping training trials

20
30
40
50
60
70
80
90

100

ac
cu

ra
cy

 (%
)

7Hz 10Hz 12Hz

(b) Ns = 1024, N′s = 256 ⇔ T = 4s

Figure 6.13: MsetCCA generalisation performance: decoding accuracy on data from distinct recording
sessions taken under different conditions, Xa and Xb where Xa is a calibration (training) set and Xb a test set.
The number of overlapping trials refers to the number of trials in Xb also used for calibration. Results using
T = 2s and T = 4s recording windows are shown. Error bars denote one standard error of the mean.

p 1 2 3 4

T 0.75 1 2 4 0.75 1 2 4 0.75 1 2 4 0.75 1 2 4

x̄ 52.22 65.56 72.22 74.44 63.33 71.67 83.89 90.56 71.11 82.78 91.11 94.44 77.78 83.33 95.56 97.78
sx̄ 8.341 7.800 6.204 7.120 6.037 5.292 3.590 2.823 5.095 4.556 3.167 1.824 7.098 6.558 2.893 1.514
σ2

f 0.084 0.084 0.107 0.201 0.029 0.067 0.136 0.107 0.107 0.035 0.075 0.082 0.126 0.088 0.051 0.039
ITR 8.69 18.70 13.64 7.64 21.61 26.51 23.61 15.59 34.30 45.00 31.90 18.29 47.89 46.09 38.35 21.14

Table 6.1: GCCA results summary: a compilation of decoding performance metrics for the GCCA algorithm.
Results are reported over varying numbers of calibration trials p and recording window lengths T (in sec-
onds). Average accuracy across frequency x̄ its standard error sx̄ are reported in %. ITR is given in bits/min.
Accuracy variance over frequency σ2

f is dimensionless.

p 1 2 3 4

T 0.75 1 2 4 0.75 1 2 3 0.75 1 2 4 0.75 1 2 4

x̄ 60.00 64.44 74.44 78.89 76.67 80.56 87.22 88.89 88.89 90.56 95.56 96.11 95.56 95.56 98.89 98.89
sx̄ 7.070 8.341 7.522 7.659 4.633 4.462 3.496 3.126 3.716 3.438 2.039 2.215 3.736 3.736 0.512 1.111
σ2

f 0.067 0.069 0.150 0.102 0.073 0.079 0.069 0.051 0.048 0.063 0.039 0.039 0.019 0.019 0.019 0.019
ITR 17.12 17.42 15.28 9.45 45.44 40.80 27.17 14.56 77.65 62.37 38.35 19.63 102.28 76.71 44.58 22.29

Table 6.2: MsetCCA results summary: a compilation of decoding performance metrics for the MsetCCA
algorithm. Results are reported over varying numbers of calibration trials p and recording window lengths
T (in seconds). Average accuracy across frequency x̄ its standard error sx̄ are reported in %. ITR is given in
bits/min. Accuracy variance over frequency σ2

f is dimensionless.

49

Chapter 7

Discussion of Results and Methodologies

7.1 Digital signal processing system

The role of the DSP system in this project was paramount. Without appropriately processed signals, even the
most sophisticated decoding algorithms would have been rendered useless.

The time domain plot in Figure 6.1 demonstrates effective sampling; the input square wave is captured with
consistent frequency and amplitude. As is more visible in Figure 6.2, the estimated spectrum of the low-pass-
filtered signal is almost exactly as desired; pass-band distortion is negligible and extremely steep roll-off is
achieved in the transition band. Furthermore, stop-band attenuation is more than sufficient and, encourag-
ingly, is very close to the 80dB design specification. Finally, after establishing effective sampling and filtering,
the PSD estimate of the downsampled signal in Figure 6.3 verifies that the theoretical downsampling rate of
f ′s = 1

4 fs = 64Hz is able to maintain signal fidelity in the pass-band. The implication of this is that 4x fewer
samples can be used to represent the original signal with negligible loss of information. This is invaluable
for a system such as the one in this project that is severely constrained in memory and computational power.

In summary, the DSP system proved very effective and was verified to operate in very close agreement with its
design parameters. Worth emphasising is the fact that all necessary DSP operations are able to be performed
in firmware on the ESP32. Not only is this a prerequisite for the end-to-end on-device processing objective,
but also, it makes for a more flexible and future-proof system. New filter weights or other DSP-related
parameters can simply be flashed onto the device, or indeed, uploaded ‘over the air’ through a network
connection if needed.

7.2 Decoding

Broadly speaking, the decoding accuracy results in Chapter 6 demonstrate that the system developed in
this project is a very promising first prototype. Before any further analysis of these results, it should be
emphasised that while impressive, they were computed using data collected exclusively from the author
owing to COVID19-related circumstances. Notwithstanding, several trials were conducted under various
conditions and a stringent evaluation procedure, as detailed in Section 6.2, was employed in an attempt to
provide more robust results.

Trends in decoding accuracy with varying recording window size T and number of calibration trials p were
largely similar across the GCCA and MsetCCA algorithms. Accordingly, these common trends are discussed
below, followed by an analysis of their differences in Section 7.2.

The trends in average classification accuracy across frequencies in Figure 6.7 and Figure 6.9 show a strong
positive correlation to the length of the recording window T used for measurement. This is a fairly obvious
and expected result. It should be noted, however, that this increase in accuracy with T was not exclusively
monotonic for each stimulus frequency. For example, in Figure 6.7, decoding accuracy of the 12Hz stimulus
was higher for T = 1s than T = 2s. These infrequent fluctuations could be due to random noise or EMG or
other signal artefacts present during one trial but not another.

What is evident from both experiments with varying T and p is that the reliance on the number of calibration
trials decreases with increasing T. For example, in Figure 6.9, only p = 2 calibration trials are required using
T = 2s windows to exceed the average accuracy for p = 4 calibration trials when using T = 0.75s windows.
Figure 6.11 shows that, in general, the variance in decoding accuracy across stimulus frequencies decreases
when more calibration trials are available. For the GCCA algorithm, this behaviour is only consistent for
T > 1s, however. The reason for this is likely because with more calibration data on which to fit the decoding

50

7.2. Decoding

models, inferential/test variance tends to decrease as the reference templates or filters learnt during fitting
better represent underlying EEG dynamics and can better reject random, task-unrelated components. As
the decoding classifiers effectively use independent instances of their respective decoding algorithm for each
frequency, a decrease in test variance within frequency sets results in a decrease in variance across them too.

Comparison of accuracy across algorithms

While trends in decoding accuracy between the GCCA and MsetCCA algorithms are similar, there are
some notable differences. With reference to the summarised performance metrics in Table 6.2 and Table
6.2, MsetCCA shows superior quantitative performance characteristics over all metrics considered. Further-
more, the plots in Figure 6.11 show a far more consistent decline in accuracy variance across frequencies with
increasing p for MsetCCA compared to GCCA, as well as lower absolute variances. Finally, in the results of
the generalisation tests in Section 6.2.3, the MsetCCA results once again show a more consistent trend with
substantially less variance than the GCCA counterparts. This behaviour suggests that, with more historical
calibration data from across different conditions and test subjects, MsetCCA is more likely to generalise to
true out-of-sample data.

7.2.1 Online decoding

One of the biggest challenges of this project was to develop a system capable of end-to-end, real-time on-
device decoding. That is, an embedded system capable of performing all operations needed to acquire,
process, decode and communicate signals without outsourcing any computation off the device.

As documented in the system design in Chapter 5 and demonstrated by the results in Chapter 6, one can
conclude that this objective has been achieved. This is extremely significant as it means that a fully functional
(albeit fairly basic) BCI device can be deployed in a small, self-contained package that is both completely mo-
bile and extremely cost-effective. From a technical perspective, the fact that sophisticated decoding algorithms
leveraging eigenvalue solvers and other high level linear algebra can be performed on a microcontroller - and
with such ease of implementation - is quite remarkable.

7.2.2 Generalisation ability

One of the most significant limitations of this system is the need for calibration during prior to each new
recording session. A session, in this context, is defined as a distinct, continuous period in which the BCI
headset was not removed or adjusted. Correspondingly, in order to separate sessions and truly test generali-
sation ability, it was required that the headset be removed between sessions. The results of the generalisation
tests in Section 6.2.3 show that using calibration data from one session was not helpful when used in prepa-
ration for inference in a different session. Referring to the convention explained in Section 6.2.3, Figure 6.12
and Figure 6.13 show very poor decoding performance for the case of no overlapping trials. This suggests
that using calibration and validation data from two completely distinct sessions is not feasible - at least, not
with the limited data available at this point. Interestingly, with n > 0 overlapping trials, decoding accuracy
was worse than in the original decoding tests in Section 6.2.1 where calibration and test data sets were drawn
from the same session (ultimately leaving less data available for calibration). In the case of overlapping trials,
calibration was performed on both the whole first session and a subset of the second session on which testing
was performed. It is thus surprising that this overlapping case yielded poorer performance as the decoding
algorithms had access to a superset of the calibration data available in the initial tests in Section 6.2.1.

These findings suggest that there is dramatic variance in recorded signals across sessions. This may be due
to several factors:

1. There was no standardised positioning of the BCI headband on the subject’s head across sessions.
Each time the headband was put on, an attempt was made to estimate consistent positioning but as the
electrodes were positioned at the back of the head, this was difficult to do reliably without assistance
(which was seldom available). Consequent deviations in the electrode positions across sessions would
naturally produce noticeable variance in measured signals.

2. Only dry electrodes could be used and scalp-contact quality was inconsistent at best. On some occa-
sions, it was found that electrodes would be lodged in a more favourable orientation with better scalp
contact than on others. This was caused by variations in hair partings and angle-of-location relative to
the protruding inion at the back of the skull.

3. Albeit a differential measurement across two electrodes, only a single EEG channel was available. This
poses more of a challenge for decoding algorithms to reject task-unrelated artefacts and random noise
owing to having no other independent measurements available.

51

7.3. Networking and communication

7.3 Networking and communication

The MQTT protocol for publishing data to the AWS IoT Core service proved very effective. Although it was
not formally tested, there were no recorded instances of packet loss. Furthermore, it is a widely-adopted
protocol in the Internet of Things (IoT) community and as a result, there are many open source MQTT
utilities, guides and sources of documentation. This was convenient during the development of this project
and will hopefully continue to be in future revisions if used for educational purposes.

A limitation of having to use this protocol over public Internet is the slightly inconsistent latency experienced
in publishing data. The distribution of time required to successfully publish decoded data to AWS (‘publish
time’) in Figure 6.5b demonstrates this phenomenon. The mean publish time is around 100ms with a standard
deviation of 210ms which leaves most times below the 350ms mark. However, it was noticed that sporadically,
times of over 2s would occur. This is likely due to fluctuations in network traffic - both on the Internet, the
AWS service and most likely, within the personal network of the user. This is not a significant issue, however,
as all data payloads are sent with timestamps; any readings received after a predetermined tolerance window
could simply be discarded before resynchronising the system.

7.4 System Design and Methodologies

7.4.1 Challenges encountered

Several trials and tribulations were encountered in this project - most of which were related to numeri-
cal/computation challenges or memory limitations. One of the first of these was a limitation in the eigenvalue
solver in the ulab module which only allowed for computation on symmetric matrices. Through engagement
with the author of ulab project, Mr Zoltán Vörös, a way to circumvent this problem was developed. After
reading about the QR-iteration algorithm for solving for eigenvalues iteratively, a request for a QR decom-
position function was put forth to Mr Vörös. Fortunately, he kindly obliged and soon added the required
functionality which can now be found in the latest version of this module. This is one of the beauties of open
source software.

Another challenge was encountered upon noticing that, even with identical inputs, certain linear algebra
operations on the ESP32 were not producing the same results as their equivalents on a 64-bit computer. After
some debugging, this was discovered to be down to precision issues in the MicroPython firmware image run-
ning on the ESP32. Fortunately, only one compiler flag had to be adjusted to enable double precision before
rebuilding and flashing the updated MicroPython firmware. This solved the earlier numerical equivalence
issues.

7.4.2 Limitations of the system

Besides the extremely limited budget, the constraint of having only a single channel likely proved to be the
most significant in this project. The literature cited in Section 2.5 suggests that very few, if any, BCI devices
rely on a single measurement channel alone. Systems with two to four electrodes are far more common; the
studies reviewed in Section 2.2.2 showed that, up until some saturation point, increasing the number of active
channels invariably improves decoding accuracy.

Not only would the presence of multiple channels very likely improve decoding performance in the existing
decoding algorithms used, but it would also enable other multi-channel algorithms to be used. TRCA, as
presented in Section 3.2.2, is one such algorithm that requires multiple channels. This algorithm (and its
extensions) has been shown to be very effective and would prove a worthy contender to the existing CCA-
based algorithms used in this project.

While less of a concern in a development scenario, the ergonomics of the BCI device will become an important
consideration when used in a more public setting. The current hardware prototype, as pictured in Figure 4.5,
becomes remarkably uncomfortable after even a modest amount of time. This is likely due to the fact that
the electrodes protrude substantially from the headband strap.

As discussed in Section 7.2.2, the current BCI system requires at least a few initial calibration trials to work
effectively. However, this is not a very severe limitation since calibration can be performed in just 10 to 15
seconds if only two calibration trials of T = 2s are employed, for example. This calibration period can also be
reduced if slightly decreased performance can be tolerated. The more significant limitation, however, is that
calibration must be performed at the beginning of each new session. That is, each time the BCI headband is
removed and reinstalled (or moved around significantly without being completely removed).

52

7.4. System Design and Methodologies

7.4.3 Choice of development tools

The tools used to develop this project, including the software, firmware and other technologies, were not
only important during the development phase, but will continue to be after completion of this dissertation.
The reason for this is that, as specified in the initial project scope and constraints mentioned in Chapter 1, a
core objective for this project was to create a platform that can one day be used as an engagement and/or
educational tool in the neurotechnology community. This factor strongly guided the choice of technologies
in this project and ultimately, a system has been designed that uses exclusively open source tools.

The choice of MicroPython for development with the ESP32 proved to be extremely prudent. MicroPython
offers extremely simple yet elegant syntax and useful constructs that not only speed up development, but
also make the process far more enjoyable. From an educational perspective, MicroPython is far more intuitive
than C/C++ or their derivatives and shares the same syntax as Python; an extremely popular language for
programming education. This also allowed for the use of the ulab module for linear algebra and other
scientific computing that was absolutely indispensable to this project.

Finally, ease of development using the MicroPython ecosystem is undoubtedly the easiest and most con-
venient of all other options. In particular, a Jupyter Notebook can be used over a serial connection to a
MicroPython-compatible board to offer immediate and interactive development, experimentation and de-
bugging. Compared to more traditional embedded ecosystems that require any code updates to be flashed
onto the target MCU and rerun, this interactive environment is remarkably efficient. All components of this
system - including those responsible for data acquisition, filtering, computation and communication - were
developed in an interactive notebook environment before being compiled into frozen bytecode on the device.

53

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Over the course of this project, an ultra low-cost, fully self-contained BCI prototype was developed. The
research questions posed in Section 1.2.1 have been addressed:

1. An ultra low-cost BCI device can be used for the purpose of decoding basic EEG signals such as SSVEPs
in real time. Subject to performing a short calibration sequence each time the BCI is put on, decoding
accuracy of 95.56± 3.74% with an ITR of 102 bits/min (p = 4, T = 0.75s). With more modest calibration
requirements (p = 2, T = 1s), accuracy of 80.56± 4.46% with an ITR of 40 bits/min can be achieved.

2. The device can achieve the aforementioned performance when performing all operations necessary to
do so on the device itself. No computational or other outsourcing is required.

The results presented in Chapter 6 demonstrate that the DSP system, coupled with the decoding algorithms
used, proved very effective for SSVEP decoding. It can be concluded that, of the applicable algorithms
explored, MsetCCA offers superior performance in terms of accuracy, ITR and robustness. While the results
in this study are somewhat limited due to the fact that data was only collected from a single subject, they
nonetheless present an encouraging proof-of-concept for further, more stringent investigation.

At the time of writing, to the best of the author’s knowledge, there are no fully mobile, self-contained BCI
devices in the price range of around £20. Furthermore, unlike many existing research devices that use
proprietary software or other tools, this prototype was developed using exclusively open source software. As
a result, this project presents an exciting prospect for further research and development as it could become a
valuable tool for education and public engagement.

8.2 Future work

While the system developed in this project performed remarkably well considering the constraints imposed
on it, there are several areas for improvement. The following observations and suggestions are made for
future extensions of this project.

Multi-channel sensing

As mentioned in the prior discussion, the limitation of only having one active EEG channel was significant.
It is firmly believed that introducing addition channels would significantly improve decoding performance.
Furthermore, it is conceivable that the existing electronic hardware in this project could be adapted for multi-
channel support by using a multi-channel analogue frontend (as is used on the OpenBCI Ganglion board, for
example). The ESP32 SoC also has several available ADC inputs.

Algorithm expansion

While the algorithms selected in this project are some of the most popular and are close to the state-of-
the-art at the time of writing, there are many other slight adjustments and extensions to these algorithms
that warrant exploration. For example, if multi-channel sensing is introduced, algorithms related to finding
optimal spatial filters across channels can be used. TRCA and its extensions (such as ensemble TRCA) are
examples of such algorithms that have proved effective in the literature.

54

8.2. Future work

A more robust testing framework

As alluded to, the COVID19 Pandemic made it difficult to gather data from different subjects during the
course of this project. As a result, data was only collected from the author. An obvious future step would be
to extend this experiment over many more test subjects of different ages with differing head morphologies
and hair types. Having a broader test group could also be valuable for other reasons; subject to relevant data
privacy considerations, the web logger infrastructure documented in Section 5.7 could allow anonymised
EEG data to be collected remotely from a wide audience from the comfort of their homes. Optimising
decoding algorithms using data from a wider variety of people would likely lead to a much greater chance
of achieving effective generalisation across recording sessions with less need for calibration.

Due to time constraints, testing procedures in this project were also fairly limited. More stringent validation
tests would be helpful extensions. For example, data was collected under fairly idealised conditions where
the subject did not move their head or eyes considerably. In future, the effect of some of the following
disturbances on decoding performance could be investigated:

• varying degrees of head and body movement

• eye movement and blinking

• modulation of focus on the stimulus and concentration in general

Another useful test would be to occasionally randomise the order of stimulus frequencies associated with the
flashing squares in the SSVEP user interface. This could be used to verify that the decoding algorithms are
indeed using valid EEG signals for frequency discrimination and not just other signal components correlated
to the fixed position of the stimulus frequencies.

Finally, experimenting with different SSVEP stimuli configurations and analysing the impact on decoding
performance (if any) would be interesting. This could include varying the spatial distribution of stimuli as
well as their colours and contrast relative to the background colour.

Improved SSVEP squares user interface

As depicted in Figure 5.1, the SSVEP squares user interface created for this project is very basic. A very
useful extension would be to interpret signals published from BCI devices in order to provide user feedback
of decoded signal results. Potentially, a means of visualising raw data could also be incorporated which
would offer a far richer user experience.

Another limitation of the current user interface is that the flicker frequencies of stimulus squares are con-
trolled by vanilla Javascript. Consequently, there is likely to be fluctuations in the consistency of frequencies
displayed on different devices and even on the same device during different computational loading condi-
tions. In future, a more robust technology should be investigated to ensure that precise and consistent flicker
frequencies are maintained. WebGL or related wrapper libraries such as Three.js could be potential options.

Improved BCI headband ergonomics

As mentioned in Section 7.4.2, the current design of the BCI hardware becomes uncomfortable to wear, even
after short periods of time. Before deploying this device in a public setting, work should be done to improve
the ergonomics of the design to achieve greater comfort; ideally without any resulting compromises to the
performance of the system.

55

https://www.khronos.org/webgl/
https://threejs.org/

Appendix A

Appendices

A.1 Firmware Implementations

from ulab import numpy as np

def power_iteration(A, iterations):

"""

Iterative algo. to find the eigenvector of a matrix A corresponding to the largest

eigenvalue.

"""

choose random initial vector to reduce risk of choosing one orthogonal to

target eigen vector

b_k = np.array([urandom.random() for i in range(len(A))])

for _ in range(iterations):

b_k1 = np.dot(A, b_k)

b_k1_norm = np.linalg.norm(b_k1)

re normalize the vector

b_k = b_k1 / b_k1_norm

return b_k1_norm, b_k

Listing 4: MicroPython implementation of the Power Iteration algorithm presented in Algorithm 1 for finding
the maximum real eigenvalue of a symmetric, real-valued matrix

from ulab import numpy as np

def qr_iteration(A, iterations=30):

"""

Use the QR iteration algorithm to iteratively solve for the eigenvectors and eigenvalues

of a matrix A. Note: only guaranteed to recover exactly for symmetric matrices

with real eigenvalues. May work partially for asymmetric matrices (no complex support yet).

Number of iterations is specified by `iterations` and should be tuned empirically. Typically,

30 is more than enough.

Returns:

`lam`: vector of eigenvalues

`Q_bar`: matrix of eigenvectors (columns)

"""

Ak = A

Q_bar = np.eye(len(Ak))

for _ in range(iterations):

Qk, Rk = np.linalg.qr(Ak)

Ak = np.dot(Rk, Qk)

Q_bar = np.dot(Q_bar, Qk)

lam = np.diag(Ak)

return lam, Q_bar

Listing 5: MicroPython implementation of the QR Iteration algorithm presented in Algorithm 3

56

A.2. EEG Hardware Schematics

A.2 EEG Hardware Schematics

All schematics in this section were kindly provided by Steven Wong from the Imperial College NGNI Lab
who designed them.

57

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

D
D

C
C

B
B

A
A

Title

N
um

ber
R
evision

S
ize

A
3

D
ate:

19/05/2021
S
heet of

F
ile:

m
ain.SchD

oc
D
raw

n B
y:

R
G
2

R
G
1

G
N
D

V
C
C

R
G
1

R
G
2

7
65

U
6BM

C
P6002T

-I/SN

7
65

U
9B

M
C
P6002T

-I/SN

V
R
E
F

V
R
E
F

25 V
1 uF
C
17

V
C
C

G
N
D

R
L
D
_B

U
F

R
L
D
_B

U
F

V
R
E
F

R
L
D
_B

U
F

0402
330kΩ

R
24

IN
A
M
P_O

U
T

100 nF
16 V

C
9

100 nF
16 V

C
10

100 nF
16 V

C
11

G
N
D

V
C
C

E
L
E
C
T
R
O
D
E
_P

E
L
E
C
T
R
O
D
E
_N

G
N
D

100 nF
16 V

C
6

B
U
T
_AG
N
D

100 nF
16 V

C
1

G
N
D

G
N
D

G
N
D

G
N
D

E
SP32_T

X
E
SP32_R

X

E
SP32_T

X
E
SP32_R

X

G
N
D

Program
m
ing C

onnector

V
IN

1

G
N
D

2
C
E

3

ST
5

V
O
U
T

6
U
3

L
M
66100D

C
K
R

G
N
D

V
B
A
T
T

V
B
A
T
T
_SW

100 nF
16 V

C
8

6.3 V
10 uF
C
32

G
N
D

100 nF
16 V

C
7

G
N
D

V
IN

4

2

E
N

3
V
B
IA
S

1

V
R
E
F

5

G
N
D

U
5

R
E
F1933A

ID
D
C
T

V
R
E
F

2.2uH
2520

L
1

L
aird M

G
V
252012S2R

2M
-10

22 uF
6.3 V
0603

C
5

3V
3

22 uF
6.3 V
0603

C
2

B
O
O
T
0

100 nF
16 V

C
3

100 nF
16 V

C
22

3V
3

8.2kΩ

R
21

100 nF
16 V

C
12

B
O
O
T
0

1u F
16 V

C
21

T
hird order H

ourglass low
-pass filter

Q
 = 2.17, Fc = 37.4 H

z, Fn = 50 H
z

50 H
z R

ejection:
M
in = 17 dB

, N
om

 = 35 dB
, M

ax = 55 dB

D
V
D
D

D
B
G
_PW

R
M
axim

um
 output capacitance = 10 uF

Typ 10 m
V
 dropout @

 0 m
A
 , 120 m

V
 dropout @

 10 m
A

3V
3

V
C
C

M
O
S
I

2 1
P1T
E
 282834-2

G
N
D

1

3V
3

2

E
N

3

SE
N
SO

R
_V

P
4

SE
N
SO

R
_V

N
5

IO
34

6

IO
35

7

IO
32

8

IO
33

9

IO
25

10

IO
26

11

IO
27

12

IO
14

13

IO
12

14

GND15

IO1316

NC17

NC18

NC19

NC20

NC21

NC22

IO1523

IO224

IO
0

25
IO
4

26
IO
16

27
IO
17

28
IO
5

29
IO
18

30
IO
19

31
N
C

32
IO
21

33
R
X
D
0

34
T
X
D
0

35
IO
22

36
IO
23

37
G
N
D

38

E
PA

D
39

U
1

E
spressif System

s E
SP32-W

R
O
O
M
-32E

C
S_N

SC
K

M
ISO

G
N
D

V
FB

 = 495 - 505 m
V
 for T

PS63000
Input voltage range: 1.8 V

 to 5.5 V
E
fficiency: 70+a

 @
 1m

A
 - 10 m

A
, 90+a

 @
 100+

m
A

V
FB

100 nF
16 V

C
23

100 nF
16 V

C
24

G
N
D

123

4

5 6

7

8
U
7

IN
A
126E

A
/2K

5

E
SP32_E

N

E
SP32_E

N

A
D
C

3V
3

E
L
E
C
T
R
O
D
E
_P

E
L
E
C
T
R
O
D
E
_N

E
L
E
C
T
R
O
D
E
_R

L
D

E
L
E
C
T
R
O
D
E
_R

L
D

V
O
U
T

1

L
2

2

PG
N
D

3

L
1

4

V
IN

5

E
N

6

PS/SY
N
C

7

V
IN
A

8

G
N
D

9

FB
10

E
P

11

U
2

T
PS63000D

R
C
R
G
4

SW
1

0603
71.5 Ω
R
29

1
23

4 8

U
6A

M
C
P6002T

-I/SN

V
C
C

G
N
D

1u F
16 V

C
35

V
R
E
F

G
N
D

C
A
B
L
E
_SC

R
E
E
N

7
6 5

U
10B

M
C
P6002T

-I/SN

1
23

4 8

U
10A

M
C
P6002T

-I/SN

1
23

4 8

U
9A

M
C
P6002T

-I/SN

47nF
16.0 V

C
27

100 nF
16 V

C
30

V
R
E
F

V
R
E
F

20kΩ

R
18

6.8kΩ

R
14

16kΩ

R
15

6.3 V
330nF

C
15

470nF
10.0 V

C
14

200kΩ

R
10

200kΩ
R
25

68nF
16.0 V

C
18

10kΩ
R
20

V
R
E
F

1kΩ

R
8

V
C
C

G
N
D

11kΩ

R
16

6.3 V
330nF
C
25

68nF
16.0 V

C
26

V
R
E
F

T
B
D
 Ω

D
N
F

R
23

T
B
D
 Ω

D
N
F

R
26

V
R
E
F

A
D
C

PW
0

PA
0

PB
0

F
ILT

E
R
_O

U
T

1.5nF
50.0 V
D
N
F

C
13

0.0 Ω
D
N
F

R
30

0.0 Ω

R
28

0805

FB
1

G
Z
2012D

601T
F

10kΩ
R
1

510kΩ
R
3

88.7kΩ
R
2

6pF
50.0 V

C
4

24kΩ
R
7

24kΩ
R
9

D
5

L
E
SD

8D
3.3C

T
5G

D
3

D
4

D
1

L
E
SD

8D
3.3C

T
5G

10kΩ
R
5

150pF
50.0 V

C
31

10kΩ

R
22

330kΩ
R
19

100.0 Ω
R
6

A
ll passive com

ponents are 0402 unless specified
R
esistor tolerance =

 1a
, C

apacitor tolerance =
 10a

SD
I

5

G
N
D

3

W
1

C
L
K

4

V
D
D

2

B
7

A
8

C
S

6

10.0 kΩ

U
4

A
nalog D

evices A
D
5160B

R
JZ
10-R

L
7

V
C
C

G
N
D

SC
K

C
S_N

M
O
S
I

PW
0

PA
0

PB
0

R
_W

A
(D
) = ((256 - D

) / 256) * 10kohm
 + R

w
R
_W

B
(D
) = (D

/ 256) * 10kohm
 + R

w
R
w
: 50 ohm

 (N
om

.), 120 ohm
 (M

ax)
SPI = 25 M

H
z m

ax

100 nF
16 V

C
33

G
ain = 1.745 - 19.2 w

here D
igiPot D

 = 0 - 255
Feedback low

-pass fc = 12.9 kH
z - 5.8 kH

z
Input low

-pass fc = 36.35 H
z

G
ain = 5 + 80k / R

_G
R
_G

 = 71.5 ohm
, G

ain = 1120
Input H

igh-pass filter fc = 0.34 H
z

IN
A
M
P H

igh-pass filter fc = 0.48 H
z

R
FI L

ow
-pass filter fc_diff = 233 H

z
R
FI L

ow
-pass filter fc_cm

 = 7.2 kH
z

4.7uF
10.0 V

C
20

4.7uF
10.0 V

C
16

1M
Ω

R
31

100kΩ

R
13

100kΩ

R
17

220pF
50.0 V

C
29

220pF
50.0 V

C
28V

R
E
F

100kΩ
R
11

100kΩ
R
12

3.3nF
50.0 V

C
19

L
M
66100 Ideal D

iode w
ith input polarity protection

Input voltage range: 1.5 V
 to 5.5 V

M
axim

um
 continuous current I_m

ax = 1.5 A
79 m

O
hm

 @
 5 V

, 91 m
O
hm

 @
 3.6 V

, 141 m
O
hm

 @
 1.8 V

100 nF
16 V

C
34

B
U
T
_BG
N
D

3V
3

SW
2

D
2

L
E
SD

8D
3.3C

T
5G

10kΩ
R
27

25

1346 SW
3

JS202011A
Q
N

D
B
G
_PW

R

R
11:R

13 and R
12:R

17 act as potential divider for input signal
Increasing R

11 and R
12 w

ill (@
 room

 tem
perature):

- R
educe signal ratio at IN

A
M
P input (50a

 @
 100 kO

hm
, 76.7a

 @
 330 kO

hm
)

- Increase therm
al noise (32nV

/H
z^1/2 @

 100 kO
hm

, 42nV
/H
z^1/2 @

 330 kO
hm

)
- Increase D

C
 offset at IN

A
M
P output due to R

11/R
12 m

ism
atch

B
U
T
_B

0.0 Ω

R
32

0.0 Ω

R
33

D
7

D
8

D
9

D
10

G
N
D

1M
Ω

R
35

V
B
A
T
T
_M

O
N

V
B
A
T
T
_M

O
N

0603
680kΩ
R
34

G
reen

D
11

19-217/G
H
C
-Y
R
1S2/3T

R
ed

D
12

K
T-0603R

1kΩ

R
37

220.0 Ω

R
36

G
N
D

G
R
N
_L

E
D

R
E
D
_L

E
D

D
6

100 nF
16 V

C
36

26.26 x 26.26x 2.0 m
m

SH
1

L
eader T

ech SM
S
-403C

G
N
D

B
U
T
_A

G
R
N
_L

E
D

R
E
D
_L

E
D

PIC101PIC102 COC1
PIC201PIC202

COC2
PIC301PIC302

COC3
PIC401PIC402

COC4

PIC501PIC502

COC5

PIC601PIC602

COC6

PIC701PIC702
COC7

PIC801PIC802
COC8

PIC901PIC902
COC9

PIC1001PIC1002
COC10

PIC1101PIC1102
COC11

PIC1201PIC1202
COC12

PIC1301
PIC1302 COC13

PIC1401
PIC1402

COC14

PIC1501
PIC1502 COC15

PIC1601
PIC1602

COC16

PIC1701
PIC1702

COC17

PIC1801 PIC1802COC18

PIC1901 PIC1902
COC19

PIC2001
PIC2002 COC20

PIC2101PIC2102

COC21
PIC2201PIC2202

COC22

PIC2301PIC2302

COC23
PIC2401PIC2402 COC24

PIC2501 PIC2502
COC25

PIC2601 PIC2602
COC26

PIC2701
PIC2702

COC27
PIC2801PIC2802

COC28
PIC2901PIC2902

COC29

PIC3001
PIC3002

COC30

PIC3101
PIC3102

COC31

PIC3201PIC3202
COC32

PIC3301PIC3302

COC33

PIC3401PIC3402

COC34

PIC3501PIC3502
COC35

PIC3601PIC3602
COC36

PID101 PID102COD1

PID201 PID202COD2

PID301 PID302COD3

PID401 PID402COD4

PID501 PID502COD5

PID601 PID602COD6

PID701PID702 COD7

PID801PID802 COD8

PID901PID902 COD9

PID1001PID1002 COD10

PID1101
PID1102

COD11

P
I
D
1
2
0
1

P
I
D
1
2
0
2

COD12

PIFB101
PIFB102

COFB1

PIL101
PIL102

COL1

PIP101

PIP102

COP1

PIR101PIR102 COR1

PIR201 PIR202COR2

PIR301 PIR302COR3

PIR501PIR502 COR5

PIR601 PIR602COR6

PIR701PIR702 COR7

PIR801
PIR802 COR8

PIR901PIR902 COR9

PIR1001
PIR1002

COR10
PIR1101PIR1102 COR11

PIR1201PIR1202 COR12

PIR1301
PIR1302 COR13

PIR1401
PIR1402

COR14
PIR1501

PIR1502
COR15

PIR1601
PIR1602 COR16

PIR1701
PIR1702 COR17

PIR1801
PIR1802 COR18

PIR1901 PIR1902COR19
PIR2001PIR2002 COR20

PIR2101
PIR2102

COR21

PIR2201
PIR2202

COR22

PIR2301
PIR2302

COR23

PIR2401
PIR2402

COR24

PIR2501 PIR2502COR25

PIR2601
PIR2602 COR26

PIR2701PIR2702 COR27

PIR2801
PIR2802 COR28

PIR2901PIR2902

COR29
PIR3001

PIR3002
COR30

PIR3101
PIR3102 COR31

PIR3201
PIR3202 COR32

PIR3301
PIR3302 COR33

PIR3401PIR3402

COR34

PIR3501PIR3502

COR35

PIR3601
PIR3602 COR36

PIR3701
PIR3702 COR37

PISH101

COSH1

PISW101 PISW102
COSW1

PISW201 PISW202
COSW2

P
I
S
W
3
0
1

P
I
S
W
3
0
2

P
I
S
W
3
0
3

P
I
S
W
3
0
4

P
I
S
W
3
0
5

P
I
S
W
3
0
6

COSW3

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

PIU104
P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

PIU1010

PIU1011
PIU1012

PIU1013

PIU1014

PIU1015PIU1016PIU1017PIU1018PIU1019PIU1020PIU1021PIU1022PIU1023PIU1024

PIU1025
PIU1026

PIU1027

PIU1028
PIU1029

PIU1030

PIU1031

PIU1032

PIU1033

PIU1034

PIU1035
PIU1036

PIU1037

PIU1038

PIU1039

COU1

P
I
U
2
0
1

PIU202

P
I
U
2
0
3

PIU204

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

PIU209

PIU2010

PIU2011

COU2

P
I
U
3
0
1

PIU302
P
I
U
3
0
3

PIU305

P
I
U
3
0
6

COU3

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
3

P
I
U
4
0
4

P
I
U
4
0
5

P
I
U
4
0
6

P
I
U
4
0
7

P
I
U
4
0
8

COU4

P
I
U
5
0
1

PIU502
P
I
U
5
0
3

P
I
U
5
0
4

P
I
U
5
0
5

COU5

P
I
U
6
0
1

P
I
U
6
0
2

P
I
U
6
0
3

PIU604 PIU608

COU6A

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
7

COU6B

P
I
U
7
0
1

P
I
U
7
0
2

P
I
U
7
0
3

PIU704
PIU705

P
I
U
7
0
6

PIU707
P
I
U
7
0
8

COU7

P
I
U
9
0
1

P
I
U
9
0
2

P
I
U
9
0
3

PIU904 PIU908
COU9A

P
I
U
9
0
5

P
I
U
9
0
6

P
I
U
9
0
7

COU9B

P
I
U
1
0
0
1

P
I
U
1
0
0
2

P
I
U
1
0
0
3

PIU1004 PIU1008

COU10A

P
I
U
1
0
0
5

PIU1006
PIU1007

COU10B

PIC401
PIC501

PIC2101
PIC2201

PIFB101

PIR302

PIR501
PIR2701

P
I
U
2
0
1

P
I
U
5
0
3

P
I
U
5
0
4

PIC1301

PIR2102

P
I
U
1
0
9

P
I
U
1
0
0
1

NLADC

PID701

PIU1025
NLBOOT0

PIC601
PID102

PIR502PISW102

P
I
U
1
0
8

NLBUT0A

PIC3401
PID202

PIR2702PISW202

P
I
U
1
0
6

NLBUT0B

P
I
U
6
0
1

P
I
U
6
0
2

NLCABLE0SCREEN

PIU1029

P
I
U
4
0
6 NLCS0N

P
I
S
W
3
0
3

P
I
S
W
3
0
6

PIC201
PIC301

PIFB102
PIR101

P
I
U
1
0
2

PID402

PIR1302

NLELECTRODE0N

PID502

PIR1702

NLELECTRODE0P

PID302

PIR2401

NLELECTRODE0RLD

PIC101

PID801

PIR102
P
I
U
1
0
3

NLESP320EN

PID1001

PIU1034
NLESP320RX

PID901

PIU1035
NLESP320TX

PIC1402

PIC1501

PIR1602
PIR2001

PIU1007
NLFILTER0OUT

PIC102
PIC202

PIC302

PIC502

PIC602

PIC702
PIC802

PIC902
PIC1002

PIC1102
PIC1202

PIC2102
PIC2202

PIC2302
PIC2402

PIC3202

PIC3302

PIC3402

PIC3502

PIC3602

PID101
PID201

PID301
PID401

PID501

PID601

PID702
PID802

PID902
PID1002

PID1102

P
I
D
1
2
0
2

PIP102

PIR201

PIR3001

PIR3502

PISH101

PISW101
PISW201

P
I
U
1
0
1

PIU1015

PIU1038

PIU1039

P
I
U
2
0
3

PIU209
PIU2011

PIU302
P
I
U
3
0
3

PIU305

P
I
U
4
0
3

PIU502

PIU604

PIU704

PIU904

PIU1004
PIR3602

PIU1011

NLGRN0LED

PIC2701

PIC3001

PIR1401

PIR1802
PIR1902

P
I
U
7
0
6

NLINAMP0OUT

PIU1031
NLMISO

PIU1037

P
I
U
4
0
5 NLMOSI

PIC801 PIR601
P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

PIC1401

PIC1502

PIR1002

PIR1402
PIR1501

PIC1601
PIC1902

PIC2801

PIR1301
PIC1602 PIR1102

P
I
U
7
0
2

PIC1701

PIR1901

P
I
U
6
0
6

PIC1702

P
I
U
6
0
7

PIU705

PIC1802

PIC2702

PIC3002

PIR1502
P
I
U
1
0
0
5

PIC1901
PIC2002

PIC2901

PIR1701
PIC2001 PIR1202

P
I
U
7
0
3

PIC2502
PIC2602

PIR1601
P
I
U
1
0
0
3

PIC3101

PIR2402

PIR3102

P
I
U
9
0
7 PIC3102

PIR2201

PIR3101P
I
U
9
0
6

PIC3501

PIR2801

PIR3002
P
I
U
6
0
3

PID602
P
I
S
W
3
0
2

P
I
S
W
3
0
5

P
I
U
3
0
1

PID1101
PIR3601P

I
D
1
2
0
1

PIR3701

PIL101

PIU204

PIL102

PIU202

PIR702PIR901
P
I
U
9
0
3

PIR1801

PIR2002PIR2502

PIU1006

PIR3202
P
I
U
5
0
5PIR3302

P
I
U
5
0
1

PIU104
P
I
U
1
0
5

PIU1010

PIU1012

PIU1013

PIU1014

PIU1017PIU1018PIU1019PIU1020PIU1021PIU1022PIU1023PIU1024

PIU1026

PIU1027

PIU1028

PIU1032

PIU1033

PIU1036

PIR801
PIR2301

P
I
U
4
0
8 NLPA0 PIR2101

PIR2601P
I
U
4
0
7 NLPB0

PIC1302

PIR2302
PIR2602

P
I
U
4
0
1

P
I
U
1
0
0
2

NLPW0

PIR3702

PIU1016

NLRED0LED

PIR701
PIR2901

P
I
U
7
0
1

NLRG1

PIR902
PIR2902

P
I
U
7
0
8

NLRG2

PIR2202

P
I
U
9
0
1

P
I
U
9
0
2

NLRLD0BUF

PIU1030

P
I
U
4
0
4 NLSCK

PIP101
P
I
S
W
3
0
1

P
I
S
W
3
0
4

PIC3601
PIR3402PIR3501

P
I
U
1
0
7

NLVBATT0MON
PIC701

PIC3201

PIR602
PIR3401

P
I
U
2
0
5

P
I
U
3
0
6

PIC901
PIC1001

PIC1101
PIC1201

PIC2301

PIC3301

PIR3201

P
I
U
4
0
2

PIU608

PIU707

PIU908

PIU1008

PIC402

PIR202 PIR301
PIU2010

NLVFB

PIC1801

PIC2401

PIC2501
PIC2601

PIC2802
PIC2902

PIR802

PIR1001
PIR1101

PIR1201

PIR2501

PIR2802

PIR3301

P
I
U
6
0
5

P
I
U
9
0
5

NLVREF

A.2. EEG Hardware Schematics

from ulab import numpy as np

def solve_gen_eig_prob(A, B, eps=1e-6):

"""

Solves the generalised eigenvalue problem of the form:

Aw = lambda*Bw

Note: can be validated against `scipy.linalg.eig(A, b=B)`

Ref:

'Eigenvalue and Generalized Eigenvalue Problems: Tutorial (2019)'
Benyamin Ghojogh and Fakhri Karray and Mark Crowley

arXiv 1903.11240

"""

Lam_b, Phi_b = np.linalg.eig(B) # eig decomp of B alone

Lam_b = np.eye(len(Lam_b))*Lam_b # convert to diagonal matrix of eig vals

Lam_b_sq = replace_nan(Lam_b**0.5)+np.eye(len(Lam_b))*eps

Phi_b_hat = np.dot(Phi_b, np.linalg.inv(Lam_b_sq))

A_hat = np.dot(np.dot(Phi_b_hat.transpose(), A), Phi_b_hat)

Lam_a, Phi_a = np.linalg.eig(A_hat)

Lam_a = np.eye(len(Lam_a))*Lam_a

Lam = Lam_a

Phi = np.dot(Phi_b_hat, Phi_a)

return np.diag(Lam), Phi

Listing 6: MicroPython implementation of the generalised eigenvalue algorithm in Algorithm 4

from ulab import numpy as np

class CCA():

"""

Canonical Correlation Analysis algorithm for SSVEP decoding. Reference

signal `Y` is a harmonic reference set with `Nh` harmonics.

Expects a list of `stim_freqs` corresponding to SSVEP stimulus frequencies.

Requires sampling frequncy `fs` for the harmonic ref.

"""

def __init__(self, stim_freqs, fs, Nh=2):

self.Nh = Nh

self.stim_freqs = stim_freqs

self.fs = fs

def compute_corr(self, X_test):

result = {}

Cxx = np.dot(X_test, X_test.transpose()) # precompute data auto correlation matrix

for f in self.stim_freqs:

Y = harmonic_reference(f, self.fs, np.max(X_test.shape), Nh=self.Nh, standardise_out=False)

rho = self.cca_eig(X_test, Y, Cxx=Cxx) # canonical variable matrices. Xc = X^T.W_x

result[f] = rho

return result

@staticmethod # define as static to allow non-CCA instances to use this func

def cca_eig(X, Y, Cxx=None, eps=1e-6):

if Cxx is None:

Cxx = np.dot(X, X.transpose()) # signal covariance matrix

Cyy = np.dot(Y, Y.transpose()) # reference covariance matrix

Cxy = np.dot(X, Y.transpose()) # cross covariance matrix

Cyx = np.dot(Y, X.transpose()) # same as Cxy.T

M1 = np.dot(np.linalg.inv(Cxx+eps), Cxy) # intermediate result

M2 = np.dot(np.linalg.inv(Cyy+eps), Cyx)

lam, _ = solve_eig_qr(np.dot(M1, M2), 20) # solve eig. vals using QR iteration

return np.sqrt(lam)

Listing 7: MicroPython implementation of the CCA algorithm from Algorithm 5

60

A.2. EEG Hardware Schematics

from ulab import numpy as np

class UnivariateMsetCCA():

"""

Multiset CCA algorithm for SSVEP decoding.

Computes optimised reference signal set based on historical observations

and uses ordinary CCA for final correlation computation given a new test

signal.

Note: this is a 1 channel implementation (Nc=1)

"""

def __init__(self):

self.Ns, self.Nt = None, None

def fit(self, X, compress_ref=True):

"""

Expects a training matrix X of shape Nt x Ns. If `compress_ref=True`, the `Nt` components

in optimised reference signal Y will be averaged to form a single reference vector. This

can be used for memory optimisation but will likely degrade performance slightly.

"""

if X.shape[0] > X.shape[1]:

print("Warning: received more trials than samples. This is unusual behaviour: check X")

R = np.dot(X, X.transpose()) # inter trial covariance matrix

S = np.eye(len(R))*np.diag(R) # intra-trial diag covariance matrix

lam, V = solve_gen_eig_prob((R-S), S) # solve generalised eig problem

w = V[:, np.argmax(lam)] # find eigenvector corresp to largest eigenvalue

Y = np.array([x*w[i] for i, x in enumerate(X)]) # store optimised reference vector Nt x Ns

self.Y = Y

if compress_ref:

self.Y = np.mean(Y, axis=0).reshape((1, max(Y.shape))) # this will average Nt components in Y: Nc x Nt -> 1 x Nt

def compute(self, X_test):

if self.Y is None:

raise ValueError("Reference matrix Y must be computed using `fit` before computing corr")

if len(X_test.shape) == 1:

X_test = X_test.reshape((1, len(X_test)))

return CCA.cca_eig(X_test, self.Y)[0] # use ordinary CCA with optimised ref. Y

Listing 8: MicroPython implementation of the MsetCCA algorithm from Algorithm 7

61

A.2. EEG Hardware Schematics

from ulab import numpy as np

class GCCA():

"""

Generalised canonical component analysis.

Expects the target frequency at `f_ssvep`. `fs` is the sampling rate used and `Nh` the number of harmonics for the harmonic reference signal.

Ref: 'Improving SSVEP Identification Accuracy via Generalized Canonical Correlation Analysis'
Sun, Chen et al

"""

def __init__(self, f_ssvep, fs, Nh=3, name=None):

self.Nc, self.Ns, self.Nt = None, None, None

self.Nh = Nh

self.w_chi_bar_n = None

self.w_Y_n = None

self.w_Chi_n = None

self.fs = fs

self.f_ssvep = f_ssvep

self.name = name or "gcca_{0}hz".format(f_ssvep)

def fit(self, X):

"""

Fit against training tensor X.

X should be a 3rd order tensor of dim (Nc x Ns x Nt)

"""

assert len(X.shape) == 3, "Expected 4th order input data tensor: Nc x Ns x Nt"

self.Nc, self.Ns, self.Nt = X.shape

Chi_n = X

Chi_n_c = Chi_n.reshape((self.Nc, self.Ns*self.Nt))

Chi_bar_n = np.mean(Chi_n, axis=-1) # mean over trials for each channel with all samples: output shape is Nc x Ns x 1

Chi_bar_n_c = np.concatenate([Chi_bar_n for i in range(self.Nt)], axis=1) # concat along columns

Y_n = cca_reference([self.f_ssvep], self.fs, self.Ns, Nh=self.Nh).reshape(-1, self.Ns)

Y_n_c = np.concatenate([Y_n for i in range(self.Nt)], axis=1)

form X and D and find eigenvals

X = np.c_[Chi_n_c.T, Chi_bar_n_c.T, Y_n_c.T].T

d1 = Chi_n_c.dot(Chi_n_c.T)

d2 = Chi_bar_n_c.dot(Chi_bar_n_c.T)

d3 = Y_n_c.dot(Y_n_c.T)

D = block_diag(d1, d2, d3)

lam, W_eig = solve_gen_eig_prob(X.dot(X.T), D) # solve generalised eigenvalue problem

i = np.argmax(np.real(lam))

w = W_eig[:, i] # optimal spatial filter vector with dim (2*Nc + 2*Nh)

w_Chi_n = w[:self.Nc] # first Nc weight values correspond to data channels

w_Chi_bar_n = w[self.Nc:2*self.Nc] # second Nc weights correspond to Nc template channels

w_Y_n = w[2*self.Nc:] # final 2*Nh weights correspond to ref sinusoids with harmonics

self.w_chi_bar_n = w_Chi_bar_n.T.dot(Chi_bar_n)

self.w_Y_n = w_Y_n.T.dot(Y_n)

self.w_Chi_n = w_Chi_n

def compute(self, X_test):

if self.w_chi_bar_n is None:

raise ValueError("call `.fit(X_train)` before performing classification.")

rho1 = correlation(self.w_Chi_n.T.dot(X_test), self.w_chi_bar_n)[0]

rho2 = correlation(self.w_Chi_n.T.dot(X_test), self.w_Y_n)[0]

return np.sum([np.sign(rho_i)*rho_i**2 for rho_i in [rho1, rho2]])

Listing 9: Python implementation of the GCCA algorithm from Algorithm 6

62

Bibliography

[1] B. Bromm, “Human brain electrophysiology. evoked potentials and evoked magnetic fields in science
and medicine,” English, Pain (Amsterdam), vol. 39, no. 3, pp. 371–372, Dec. 1989. doi: 10.1016/0304-
3959(89)90058-4.

[2] S. Baillet, J. C. Mosher, and R. M. Leahy, Electromagnetic brain mapping, ID: 1, 2001. doi: 10.1109/79.
962275.

[3] M. Teplan, “Fundamental of eeg measurement,” MEASUREMENT SCIENCE REVIEW, vol. 2, Jan. 2002.

[4] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, Brain–computer
interfaces for communication and control, English, 2002. doi: 10.1016/S1388-2457(02)00057-3. [Online].
Available: https://dx.doi.org/10.1016/S1388-2457(02)00057-3.

[5] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on canonical correlation analysis
for ssvep-based bcis,” IEEE transactions on biomedical engineering, vol. 53, no. 12, pp. 2610–2614, 2006.

[6] A. S. Varnavas, “Signal processing methods for eeg data classification,” Ph.D. dissertation, 2008.

[7] D. Zhu, J. Bieger, G. Garcia Molina, and R. M. Aarts, “A survey of stimulation methods used in ssvep-
based bcis,” Computational intelligence and neuroscience, vol. 2010, 2010.

[8] G. Hakvoort, B. Reuderink, and M. Obbink, “Comparison of psda and cca detection methods in a
ssvep-based bci-system,” Centre for Telematics & Information Technology University of Twente, 2011.

[9] M. Panju, “Iterative methods for computing eigenvalues and eigenvectors,” arXiv preprint arXiv:1105.1185,
2011.

[10] Y. T. Wang, Y. Wang, and T. P. Jung, “A cell-phone-based brain-computer interface for communication
in daily life,” vol. 8, 2011. doi: 10.1088/1741-2560/8/2/025018.

[11] L.-D. Liao, C.-Y. Chen, I.-J. Wang, S.-F. Chen, S.-Y. Li, B.-W. Chen, J.-Y. Chang, and C.-T. Lin, “Gaming
control using a wearable and wireless eeg-based brain-computer interface device with novel dry foam-
based sensors,” Journal of neuroengineering and rehabilitation, vol. 9, no. 1, pp. 1–12, 2012.

[12] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” English, Sensors (Basel,
Switzerland), vol. 12, no. 2, pp. 1211–1279, 2012. doi: 10.3390/s120201211. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pubmed/22438708.

[13] H. Tanaka, T. Katura, and H. Sato, “Task-related component analysis for functional neuroimaging and
application to near-infrared spectroscopy data,” NeuroImage, vol. 64, pp. 308–327, 2013.

[14] M. D. Vos, M. Kroesen, R. Emkes, and S. Debener, “P300 speller bci with a mobile eeg system: Compar-
ison to a traditional amplifier,” Journal of neural engineering, vol. 11, no. 3, p. 036 008, 2014.

[15] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency recognition in ssvep-based bci using
multiset canonical correlation analysis,” International journal of neural systems, vol. 24, no. 04, p. 1 450 013,
2014.

[16] M. Nakanishi, Y. Wang, Y.-T. Wang, and T.-P. Jung, “A comparison study of canonical correlation analy-
sis based methods for detecting steady-state visual evoked potentials,” PloS one, vol. 10, no. 10, e0140703,
2015.

[17] S. Xie, C. Liu, K. Obermayer, F. Zhu, L. Wang, X. Xie, and W. Wang, “Stimulator selection in ssvep-
based spatial selective attention study,” Computational Intelligence and Neuroscience, vol. 2016, 2016, issn:
16875273. doi: 10.1155/2016/6410718.

63

https://doi.org/10.1016/0304-3959(89)90058-4
https://doi.org/10.1016/0304-3959(89)90058-4
https://doi.org/10.1109/79.962275
https://doi.org/10.1109/79.962275
https://doi.org/10.1016/S1388-2457(02)00057-3
https://dx.doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1088/1741-2560/8/2/025018
https://doi.org/10.3390/s120201211
https://www.ncbi.nlm.nih.gov/pubmed/22438708
https://www.ncbi.nlm.nih.gov/pubmed/22438708
https://doi.org/10.1155/2016/6410718

Bibliography

[18] R. Chai, G. R. Naik, S. H. Ling, and H. T. Nguyen, “Hybrid brain–computer interface for biomedical
cyber-physical system application using wireless embedded eeg systems,” Biomedical engineering online,
vol. 16, no. 1, pp. 1–23, 2017.

[19] J. Chen, D. Zhang, A. K. Engel, Q. Gong, and A. Maye, “Application of a single-flicker online ssvep bci
for spatial navigation,” PLoS ONE, vol. 12, 5 May 2017, issn: 19326203. doi: 10.1371/journal.pone.
0178385. [Online]. Available: /pmc/articles/PMC5451069/%20/pmc/articles/PMC5451069/?report=
abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451069/.

[20] L. Chu, J. Fernández-Vargas, K. Kita, and W. Yu, “Influence of stimulus color on steady state visual
evoked potentials,” English, in, ser. Intelligent Autonomous Systems 14. Cham: Springer International
Publishing, Feb. 2017, pp. 499–509, isbn: 9783319480350. doi: 10.1007/978- 3- 319- 48036- 7_36.
[Online]. Available: http://link.springer.com/10.1007/978-3-319-48036-7_36.

[21] T. Uktveris and V. Jusas, “Development of a modular board for eeg signal acquisition,” Sensors, vol. 18,
no. 7, p. 2140, 2018.

[22] V. Uurtio, J. Monteiro, J. Kandola, J. Shawe-Taylor, D. Fernandez-Reyes, and J. Rousu, “A tutorial on
canonical correlation methods,” English, ACM computing surveys, vol. 50, no. 6, pp. 1–33, Jan. 2018. doi:
10.1145/3136624. [Online]. Available: http://dl.acm.org/citation.cfm?id=3136624.

[23] B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized eigenvalue problems: Tutorial,”
arXiv preprint arXiv:1903.11240, 2019.

[24] ——, “Eigenvalue and generalized eigenvalue problems: Tutorial,” arXiv preprint arXiv:1903.11240, 2019.

[25] G. Acampora, P. Trinchese, and A. Vitiello, “Classifying eeg signals in single-channel ssvep-based bcis
through support vector machine,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE, 2020, pp. 2305–2310.

[26] P. Autthasan, X. Du, J. Arnin, S. Lamyai, M. Perera, S. Itthipuripat, T. Yagi, P. Manoonpong, and T.
Wilaiprasitporn, “A single-channel consumer-grade eeg device for brain-computer interface: Enhancing
detection of ssvep and its amplitude modulation,” English, IEEE sensors journal, vol. 20, no. 6, pp. 3366–
3378, Mar. 2020. doi: 10.1109/JSEN.2019.2958210. [Online]. Available: https://ieeexplore.ieee.
org/document/8926475.

[27] X. Duart, E. Quiles, F. Suay, N. Chio, E. Garcı́a, and F. Morant, “Evaluating the effect of stimuli color
and frequency on ssvep,” English, Sensors (Basel, Switzerland), vol. 21, no. 1, p. 117, Dec. 2020. doi:
10.3390/s21010117. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/33375441.

[28] S. Kanoga, M. Nakanishi, A. Murai, M. Tada, and A. Kanemura, “Robustness analysis of decoding
ssveps in humans with head movements using a moving visual flicker,” vol. 17, 2020. doi: 10.1088/
1741-2552/ab5760.

[29] V. Peterson, C. Galván, H. Hernández, and R. Spies, “A feasibility study of a complete low-cost
consumer-grade brain-computer interface system,” English, Heliyon, vol. 6, no. 3, e03425, Mar. 2020.
doi: 10.1016/j.heliyon.2020.e03425. [Online]. Available: https://dx.doi.org/10.1016/j.
heliyon.2020.e03425.

[30] C. M. Wong, B. Wang, Z. Wang, K. F. Lao, A. Rosa, and F. Wan, “Spatial filtering in ssvep-based bcis:
Unified framework and new improvements,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 11,
pp. 3057–3072, 2020.

[31] X. Zhao, C. Liu, Z. Xu, L. Zhang, and R. Zhang, “Ssvep stimulus layout effect on accuracy of brain-
computer interfaces in augmented reality glasses,” English, IEEE access, vol. 8, pp. 5990–5998, 2020. doi:
10.1109/ACCESS.2019.2963442. [Online]. Available: https://ieeexplore.ieee.org/document/
8947980.

[32] G. Acampora, P. Trinchese, and A. Vitiello, “A dataset of eeg signals from a single-channel ssvep-based
brain computer interface,” Data in Brief, vol. 35, p. 106 826, 2021.

[33] H. K. Lee and Y.-S. Choi, “Enhancing ssvep-based brain-computer interface with two-step task-related
component analysis,” Sensors, vol. 21, no. 4, p. 1315, 2021.

[34] R. Miao, L. Zhang, and Q. Sun, “Hybrid template canonical correlation analysis method for enhancing
ssvep recognition under data-limited condition,” in 2021 10th International IEEE/EMBS Conference on
Neural Engineering (NER), IEEE, 2021, pp. 65–68.

[35] Q. Sun, M. Chen, L. Zhang, X. Yuan, and C. Li, “Improving ssvep identification accuracy via generalized
canonical correlation analysis,” in 2021 10th International IEEE/EMBS Conference on Neural Engineering
(NER), IEEE, 2021, pp. 61–64.

64

https://doi.org/10.1371/journal.pone.0178385
https://doi.org/10.1371/journal.pone.0178385
/pmc/articles/PMC5451069/%20/pmc/articles/PMC5451069/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451069/
/pmc/articles/PMC5451069/%20/pmc/articles/PMC5451069/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451069/
https://doi.org/10.1007/978-3-319-48036-7_36
http://link.springer.com/10.1007/978-3-319-48036-7_36
https://doi.org/10.1145/3136624
http://dl.acm.org/citation.cfm?id=3136624
https://doi.org/10.1109/JSEN.2019.2958210
https://ieeexplore.ieee.org/document/8926475
https://ieeexplore.ieee.org/document/8926475
https://doi.org/10.3390/s21010117
https://www.ncbi.nlm.nih.gov/pubmed/33375441
https://doi.org/10.1088/1741-2552/ab5760
https://doi.org/10.1088/1741-2552/ab5760
https://doi.org/10.1016/j.heliyon.2020.e03425
https://dx.doi.org/10.1016/j.heliyon.2020.e03425
https://dx.doi.org/10.1016/j.heliyon.2020.e03425
https://doi.org/10.1109/ACCESS.2019.2963442
https://ieeexplore.ieee.org/document/8947980
https://ieeexplore.ieee.org/document/8947980

Bibliography

[36] Z. Vörös, The ulab book, 2021. [Online]. Available: https://micropython-ulab.readthedocs.io/en/
latest/index.html.

[37] F. Zhu, L. Jiang, G. Dong, X. Gao, and Y. Wang, “An open dataset for wearable ssvep-based brain-
computer interfaces,” Sensors (Switzerland), vol. 21, pp. 1–17, 4 Feb. 2021, issn: 14248220. doi: 10.3390/
s21041256.

[38] D.-K. Electronics, Esp32-wroom-32e. [Online]. Available: https://www.digikey.co.uk/en/products/
detail/espressif-systems/ESP32-WROOM-32E-16MB/11613166.

[39] S. M. Fernandez-Fraga, M. A. Aceves-Fernandez, J. C. Pedraza-Ortega, and S. Tovar-Arriaga, “Eeg
signal analysis methods based on steady state visual evoked potential stimuli for the development of
brain computer interfaces: A review fernandez-fraga et al issn 2349-7238.” [Online]. Available: www.
pubicon.co.in.

[40] D. P. George, Micropython - python for microcontrollers. [Online]. Available: https://micropython.org/.

65

https://micropython-ulab.readthedocs.io/en/latest/index.html
https://micropython-ulab.readthedocs.io/en/latest/index.html
https://doi.org/10.3390/s21041256
https://doi.org/10.3390/s21041256
https://www.digikey.co.uk/en/products/detail/espressif-systems/ESP32-WROOM-32E-16MB/11613166
https://www.digikey.co.uk/en/products/detail/espressif-systems/ESP32-WROOM-32E-16MB/11613166
www.pubicon.co.in
www.pubicon.co.in
https://micropython.org/

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Objectives of the Study
	Research questions to be investigated
	Significance of this work

	Scope and Constraints
	Constraint implications

	Plan of Development

	Literature Review
	Basic neurophysiology
	Electrophysiology
	Functional neuroimaging

	Electroencephalography
	Invasive vs non-invasive techniques
	The nature of EEG signals
	Electrode choice and placement
	BCI control signals

	Steady-state visual evoked potentials (SSVEP)
	Evoking and measuring SSVEPs

	Computational Approaches for SSVEP Decoding
	Power spectral density and frequency domain
	Statistical

	Existing BCI Technology

	Theory Development
	Eigenvalue Optimisation
	Optimisation form I
	Optimisation form II
	Power iteration
	Simultaneous iteration
	QR iteration algorithm

	SSVEP Decoding Algorithms
	Canonical correlation analysis (CCA)
	Task-related component analysis (TRCA)
	Multiset CCA (MsetCCA)
	Generalised CCA (GCCA)

	Apparatus and Experimental Procedure
	BCI Apparatus
	OpenBCI Ganglion
	NGNI Prototype I
	NGNI Prototype II

	Experimental Procedure
	Data acquisition
	Testing and verification
	Demonstration procedure

	System Design
	Design of the SSVEP Stimuli
	SSVEP stimulus interface

	Design of the Digital System
	Digital signal processing system

	Embedded Firmware
	MicroPython
	Module structure
	Numerical computation
	Networking
	Logging
	Digital filtering

	Algorithm Implementation
	Eigenvalue algorithms
	Decoding algorithms

	Results
	Hardware Verification and Testing
	DSP system
	Hardware and data acquisition
	Execution time profiling

	Experimental Decoding Results
	The effect of recording window length
	The effect of varying calibration trials
	Generalisation testing

	Discussion of Results and Methodologies
	Digital signal processing system
	Decoding
	Online decoding
	Generalisation ability

	Networking and communication
	System Design and Methodologies
	Challenges encountered
	Limitations of the system
	Choice of development tools

	Conclusion and Future Work
	Conclusion
	Future work

	Appendices
	Firmware Implementations
	EEG Hardware Schematics

	Bibliography

